Radyonüklitler ve Toprak Kirliliği

Yazarlar

Sultan Şahin Bal
Kenan Bulcar
Mustafa Topaksu

Özet

Bu çalışma, topraklarda tuzluluk, alkalilik ve asitlikten kaynaklanan kirliliği; nedenleri, etkileri ve ıslah yöntemleri açısından incelemektedir. Toprak bozulması, aşırı sulama, gübreleme ve iklim koşulları gibi doğal ve insan kaynaklı etkenlerle oluşmaktadır. Tuzluluk ve alkalilik genellikle kurak ve yarı kurak bölgelerde, asitlik ise nemli bölgelerde yaygındır. Yüksek tuz ve sodyum düzeyleri toprak yapısını bozarak geçirgenliği azaltır ve bitki gelişimini engellerken, düşük pH değerleri toksik elementlerin (Al, Fe, Mn) çözünürlüğünü artırarak besin alımını sınırlar. Topraklar; tuzlu, tuzlu-alkali ve alkali (sodik) olarak sınıflandırılmakta ve her biri için yıkama, jips uygulaması veya kimyasal ıslah gibi farklı yöntemler önerilmektedir. Asidik topraklar, dünya tarım alanlarının yaklaşık yarısını oluşturmakta ve besin noksanlıkları ile metal toksisitesine neden olmaktadır. Türkiye’de toprakların büyük bölümü alkalin karakterde olup, asidik topraklar genellikle Karadeniz ve Marmara bölgelerinde görülmektedir. Sürdürülebilir toprak yönetimi, uygun sulama ve pH kontrolü, toprak verimliliğinin korunması açısından büyük önem taşımaktadır.

Referanslar

Abate, T. (2022). The activity concentrations of radionuclides 226Ra, 232Th and 40K of soil samples in the case of Metekel Zone, Ethiopia. EPJ-Nuclear Sciences & Technologies. Vol. 8.

Abdelouas, A. (2006). Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact. Elements, 2(6), 335-341.

Ajayi O.S., Balogun K.O., Dike C.G. (2017). Spatial distributions and dose assessment of natural radionuclides in rocks and soils of some selected sites in southwestern Nigeria. Human and Ecological Risk Assessment: An International Journal, 23(6), 1373-1388.

Akkaya, G. (2011). Bursa ili Toprak Numunelerinde Radyonüklid Dağılımının incelenmesi, Bursa: Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.

Aközcan, S. (2020). Toprak örneklerinde doğal radyoaktivite (226Ra, 232Th ve 40K) ve radyasyon tehlikelerinin değerlendirilmesi. Kırklareli University Journal of Engineering and Science, 6(1), 12-20.

Aleksakhin R.M. (2009). Radioactive contamination as a type of soil degradation. Eurasian Soil Science, 42, 1386–1396.

Allisy, A., Becquerel, H., (1896). The discovery of radioactivity. 68(1):3–10. https://doi.org/10.1093/oxfordjournals.rpd.a031848.

ATSDR (1999). Agency for Toxic Substances and Disease Registry. Toxicological Profile for Ionizing Radiation. Atlanta: ATDSR.

Bateman, J.E., Sore, J., Knight, S.C., Bedford, P., (1994). A new gas counter for radioimmunoassay. Nucl. Instrum. Methods Phys. Res. Sect. A 348, 288-292.

Becquerel, A.H., (1896a). On the rays emitted by phosphorescence. Comptes Rendus Acad. Sci. Paris 122, 420.

Becquerel, A.H., (1896b). On the invisible rays emitted by phosphorescent bodies. Comptes Rendus Acad. Sci. Paris 122, 501.

Becquerel, A.H., (1903). On radioactivity, a new property of matter. Nobel lecture, december 11, 1903.

Becquerel, H., (1896). On the invisible radiations emitted by phosphorescent bodies. Compt. Rend. Acad. Sc. Paris 122, 501

Becquerel, H., (1896). On the invisible radiations emitted by phosphorescent bodies. Compt. Rend. Acad. Sc. Paris 122, 501.

Becquerel, H., (1896). On the invisible radiations emitted by uranium salts. Compt. Rend. Acad. Sc. Paris 122, 689

Becquerel, H., (1896). On various properties of uranium rays. Compt. Rend. Acad. Sc. Paris 123, 855

Becquerel, H., (1896a). Emission of new radiations by metallic uranium. Compt. Rend. Acad. Sc. Paris 122, 1086

Becquerel, H., (1896b). On some new properties of invisible radiations emitted by various phosphorescent bodies. Compt. Rend. Acad. Sc. Paris 122, 559.

Becquerel, H., (1896c). On the different properties of invisible radiations emitted by uranium salts, and of the radiation of the anticathodic wall of a Crookes tube. Compt. Rend. Acad. Sc. Paris 122, 762

Becquerel, H., (1897). On the law of discharge in air of electrified uranium. Compt. Rend. Acad. Sc. Paris 124, 800

Becquerel, H., (1897). Research on uranium rays. Compt. Rend. Acad. Sc. Paris 124, 438

Becquerel, H., (1899). Note on some properties of the radiation of uranium and radioactive bodies. Compt. Rend. Acad. Sc. Paris 128, 771

Becquerel, H.., (1896). On radiation emitted by phosphorescence. Compt. Rend. Acad. Sc. Paris 122, 420

Botezatu E., Iacob O. (2004). Radiological impact of TENORM on the environment in Romania. In: Proceedings of the 11th International Congress of IRPA; 23–28 May, Madrid. Madrid: IRPA; 2004. p. 1–10.

Canbazoğlu C. (2004). Elazığ yöresinde doğal radyoaktivite tayini, Elazığ: Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.

Carvalho F.P., Oliveira J.M., Malta M. (2014). Radioactivity in soils and vegetables from uranium mining regions. Procedia Earth and Planetary Science, 8, 38–42.

Cember H., Johnson T.E., Alaei P. (2008). Introduction to Health Physics. MedPh, 35(12), 5959.

Chase, G., Rabinowitz, J., (1967). Principles of Radioisotope Methodology. Burgess Publishing Company, Minneapolis.

Christa, E.P., Jojo, P.J., Vaidyan, V.K., Anilkumar, S., Eappen, K.P., (2011). Radiation dose in the high background radiation area in Kerala, India. Radiat. Prot. Dosimetry. 148 (4): p. 482–486. doi:10.1093/rpd/ncr198.

Cizdziel J.V., Ketterer M.E., Farmer D., Faller S.H., Hodge V.F. (2008). 239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS: Solution and laser ablation measurements. Analytical and Bioanalytical Chemistry, 390, 521–530.

Cullen, T.L., Penna Franca, E. (Eds.), (1977). Proceedings of the International Symposium on areas of high natural radioactivity: Pocos de Caldas. Brazil, June 16–20, 1975. Academia Brasileira de Ciencias, Rio de Janeiro.

Curie, P., Curie, M., Bemont, G., (1898). On a new, highly radioactive substance contained in pitchblende. Compt. Rend. Acad. Sc. Paris 127, 1215.

Curie, P., Curie, S., (1898). On a new radioactive substance contained in pitchblende. Compt. Rend. Acad. Sc. Paris 127, 175.

Dindaroğlu T. (2014). The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. Journal of Environmental Health Science and Engineering, 12(1), 130.

Dutreix, J, Dutreix, A., (1995). Henri Becquerel (1852–1908). Med Phys., 22(11): 1869–75. https://doi.org/10.1118/1.597442.

EPA (2024). United States Environmental Protection Agency. (12/07/2024 tarihinde https://www.epa.gov adresinden ulaşılmıştır).

Flores-McLaughlin, J., Runnells, J., Gaza, R. (2017). Overview of non-ionizing radiation safety operations on the International Space Station, J. Space Safety Eng. 4, 61.

Gabrieli, J., Cozzi, G., Vallelonga, P., Schwikowski, M., Sigl, M., Eickenberg, J., et al. (2011). Contamination of Alpine snow and ice at Colle Gnifetti, Swiss/Italian Alps, from nuclear weapons tests. Atmospheric Environment, 45, 587–593.

Gascoyne, M. (1982). Geochemistry of the actinides and their daughters. In: M. Ivanovich and R.S. Harmon (ed.) Uranium Series Disequilibrium: Applications to Environmental Problems. Oxford University Press, Oxford.

Geller ,E., Weil J., Blumel, D., Rappaport, A., Wagner, C., Taylor, R. (2004) The Concise Encyclopedia of Chemistry. Encyclopeida of Science and Technology. Columbus: The McGraw-Hill Companies, McGraw-Hill Professional.

Genet M., (1995). The Discovery of Uranic Rays: A Short Step for Henri Becquerel but a Giant Step for Science, Radiochim Acta, 70–71:3–12. https://doi.org/10.1524/ract.1995.7071.s1.3.

Gosse, J.C., Phillips, F.M., (2001). Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews 20, 1475–1560.

Grupen, C., Rodgers, M., (2016). Radioactivity and Radiation. ISBN 978-3-319-42330-2 (e-Book), DOI 10.1007/978-3-319-42330-2, 1-233, Springer.

H. Geiger, W. Müller, Electron counting tube for the measurement of the weakest radioactivities, Sciences 16 (1928) 617-618.

Holm, E., Samuelson, C., Peterson, R.B.R. (1981). Natural radioactivity around a prospected uranium mining site in a Subarctic environment, in natural radiation environment, K.G. Vohra et al., eds., New Delhi: Wiley Eastern.

Hu, Q.-H., Weng, J.-Q., Wang, J.-S., (2010). Sources of anthropogenic radionuclide in the environment: a review, J. Environ. Radioact. 426–437, https://doi.org/ 10.1016/j.jenvrad.2008.08.004.

IAEA (1974). Fission Product on Nuclear Data (FPND), Vol. III, In: Proceedings of a Panel on Fission Product Nuclear Data, 26–30 November 1973, Bologna. Vienna: IAEA.

IAEA (1998). Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, Technical Reports Series No. 389. Vienna: IAEA.

IAEA (2007). International Atomic Energy Agency. IAEA Safety Glossary – Terminology Used in Nuclear Safety and Radiation Protection. Vienna: IAEA.

IAEA (2024). International Atomic Energy Agency. (10/07/2024 tarihinde https://www.iaea.org adresinden ulaşılmıştır).

ICRP (2024). International Commission on Radiological Protection. (15/07/2024 tarihinde https://www.icrp.org adresinden ulaşılmıştır).

International Atomic Energy Association. (2022). Radioisotopes. Retrieved 07 12, 2022, from, https://www.iaea.org/topics/nuclear-science/isotopes/radioisotopes.

Iurian, A‐R., Phaneuf, M.O., Mabit, L. (2015). Mobility and bioavailability of radionuclides in soils. In: Walther C, Gupta KD, editors. Radionuclides in the Environment: Influence of Chemical Speciation and Plant Uptake on Radionuclide Migration. Cham: Springer International Publishing.

Jibiri, N., Okeyode, I. (2011). Activity concentrations of natural radionuclides in the sediments of Ogun River, Southwestern Nigeria. Radiation Protection Dosimetry, 147(4), 555-564.

Kamiya, K., et al. (2015). Long-term effects of radiation exposure on health. The lancet, 386(9992), 469-478.

Karam, P. A., & Stein, B. P. (2009). Radioactivity. Infobase Publishing.

Krivitskiy, P. Ye., Larionova, N. V., Baklanova, Yu. V., Aidarkhanov, A. O., Lukashenko, S. N. (2022). Characterization of area radioactive contamination of near-surface soil at the Sary-Uzen site in the Semipalatinsk test site. Journal of Environmental Radioactivity. 249, 106893.

Landa, E.R., (2007). Naturally occurring radionuclides from industrial sources: characteristics and fate in the environment. Radioactivity in the Environment, Volume,10, ISSN 1569-4860, /DOI: 10.1016/S1569-4860(06)10010-8

L'Annunziata, M. F. (Ed.). (2020). Handbook of radioactivity analysis. Academic press.

Liden, K., Holm, E. (1985). Measurement and dosimetry of radioactivity in the environment, in the dosimetry of ionizing radiation, Vol. 1, K.R. Kase, B.E. Bjarngard and F.H. Attix, eds., Orlando: Academic Press.

Linnik, V.G., et al. (2020). Spatial Distribution of Heavy Metals in Soils of the Flood Plain of the Seversky Donets River (Russia) based on Geostatistical Methods. Environmental Geochemistry and Health, 1-15.

Lottermoser, B., Ashley, P. (2005). Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. Journal of Geochemical Exploration, 85(3), 119-137.

Martin, A., Mead, S., Wade, B.O. (1997). European Commission Report EUR 17625 – Materials Containing Natural Radionuclides in Enhanced Concentrations. Luxembourg: Office for Official Publications of the European Communities.

Mavi, B., Akkurt, I. (2010). Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiat. Phys. Chem., 79, 933–937.

Mould, R.F., (1998). The discovery of radium in 1898 by Maria Sklodowska-Curie (1867–1934) and Pierre Curie (1859–1906) with commentary on their life and times. Br J Radiol., 71(852):1229–54. https://doi.org/10.1259/ bjr.71.852.10318996.

Mould, R.F., (1993). A Century of X-rays and Radioactivity in Medicine: With Emphasis on Photographic Records of the Early Years 1 ed. 1993 CRC Press Boca Raton 10.1201/9781315136271.

Nair, M.K., Nambi, K.S., Amma, N.S., Gangadharan, P., Jayalekshmi, P., Jayadevan, S., et al., (1999). Population study in the high natural background radiation area in Kerala, India. Radiat. Res. 152 (Suppl. 6), S145–S148.

Navas, A., Soto, J., Machín, J. (2002). Edaphic and Physiographic Factors Affecting the Distribution of Natural Gamma‐emitting Radionuclides in the Soils of the Arnás Catchment in the Central Spanish Pyrenees. European Journal of Soil Science, 53(4), 629-638.

Norris, R.S., Arkin, W.M. (1995). Known nuclear tests worldwide, 1945–1994. Bulletin of the Atomic Sciences, 51, 70–71.

NRC (2012). National Research Council. Uranium mining, processing, and reclamation. In: Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia. Washington: National Academies Press, 96–123.

OECD (2024). Nuclear Energy Agency. Uranium 2014: Resources, production and demand, 2014. (15/06/2024 tarihinde http://www.oecd-nea.org/ndd/pubs/2012/7059-uranium-2011.pdf adresinden ulaşılmıştır).

Oluwadamilare Olagbaju, P., Bola Wojuola, O., Tshivhase, V. (2021). Radionuclides Contamination in Soil: Effects, Sources and Spatial Distribution, EPJ Web of Conferences, 253, 09006.

OMÜ (2024). Ondokuz Mayıs Üniversitesi (OMÜ) Çevre Bilimi ders notları. (19/06/2024 tarihinde https://avys.omu.edu.tr adresinden ulaşılmıştır)

PCCN (2024). Preparatory Commission for the Comprehensive Nuclear Test-Ban-Treaty. General overview of the effects of nuclear testing, 2015. (20/05/2024 tarihinde http:// www.ctbto.org/nuclear-testing/the-effects-of-nuclear-testing/general-overview-oftheeffects- of-nuclear-testing/ adresinden ulaşılmıştır).

Pfeiffer, W.C., Penna-Franca, E., Ribeiro, C.C., Nogueira, A.R., Londres, H., Oliveira, A.E., (1981). Measurements of environmental radiation exposure dose rates at selected sites in Brazil. An. Acad. Bras. Cienc. 53 (4), 683–691.

Prăvălie R. (2014). Nuclear weapons tests and environmental consequences: A global perspective. Ambio., 43, 729–744.

Radvanyi, P, Villain, J., (2017). The discovery of radioactivity. CR Phys., 18(9-10): 544–50. https://doi.org/10.1016/j.crhy.2017.10.008.

Ramasamy, V., Senthil, S., Meenakshisundaram, V. (2009). Distribution of Natural Radionuclides and Minerals in Beach Sediments from North East Coast of Tamilnadu, India. African Journal of Basic and Applied Sciences, 1(1-2), 15-20.

Ramola, R., et al. (2011). Radionuclide Analysis in the Soil of Kumaun Himalaya, India, using Gamma ray spectrometry. Current Science, 906-914.

Reichelt-Brushett, A. (Ed.). (2023). Marine pollution–monitoring, management and mitigation. Springer Nature.

Robertson, D.S. (1974). Basel Proterozoic units as fossil time markers and their use in uranium prospection in formation of uranium ore deposits, pp. 495–512. Proceedings of a Symposium, Athens, Intl. Atom. Energy Agency, Vienna.

Rogers, J.J.W. & Adams, J.A.S. (1969). Uranium, p. 92-A-1–92-G-7. In: K.H. Wedepohl (ed.) Handbook of Geochemistry. Springer-Verlag, New York.

Rosenbusch, G., & de Knecht-van Eekelen, A. (2019). A New Kind of Rays. Wilhelm Conrad Röntgen: The Birth of Radiology, 79-113.

Ruedig, E., Johnson, T.E. (2015). An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA. Journal of Environmental Radioactivity. 150, 170–178.

Rutherford, E., (1903). The magnetic and electric deviation of the easily absorbed rays from radium. Philos. Mag. Ser. 6, 177e187.

Sekiya, M., & Yamasaki, M. (2015). Antoine Henri Becquerel (1852–1908): a scientist who endeavored to discover natural radioactivity. Radiological physics and technology, 8, 1-3.

Smičiklas, I., Jović, M., Šljivić ‐Ivanović, M., Mrvić, V., čakmak, D., Dimović, S. (2015). Correlation of Sr2+ retention and distribution with properties of different soil types. Geoderma, 253–254, 21–29.

Smičiklas, I., Šljivić-Ivanović, M. (2016). Soil Contamination - Current Consequences and Further Solutions Radioactive Contamination of the Soil: Assessments of Pollutants Mobility with Implication to Remediation Strategies. London: Intech Press.

Steinhauser, G., Brandl, A., Johnson, T.E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Science of the Total Environment, 470–471, 800–817.

Şahin, S. (2009). Sivrice fay zonundaki radon değişimi ve doğal radyoaktivite, Elazığ: Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Doktora tezi.

Şahin Bal, S., Doğru, M. (2013). Su ve toprak örneklerinde radon gazı yayılımının mevsimsel değişiminin incelenmesi. BEÜ Fen Bilimleri Dergisi, 2(2), 192-196.

Şahin Bal, S., Kurşat, M., Yılmaz, E., Kuluöztürk, M. F., Karatepe, Ş. (2016). Bitlis yöresinde yetişen bazı tıbbi ve aromatik bitkilerde doğal radyasyonun ve ağır metallerin tespiti. Bitlis: Çok Disiplinli Araştırma Projesi, BEBAP 2014.06.

TENMAK (2024). Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu. (24/07/2024 tarihinde https://www.tenmak.gov.tr adresinden ulaşılmıştır).

Tonnessen, B.H., Pounds, L., (2011). Radiation physics, J. Vasc. Surg. 53, 6S.

Turner, M., Rudin, M., Cizdziel, J., Hodge, V. (2003). Excess plutonium in soil near the Nevada Test Site, USA. Environmental Pollution, 125, 1 93–203.

UNSCEAR (1993). Exposure from Natural Sources of Radiation. United Nations Scientific Commettee on the Effects of Atomic Radiation. Report to General Assembly. New York: UNSCEAR.

UNSCEAR (2000). Sources and Effects of Ionizing Radiation – Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. New York: United Nations.

UNSCEAR (2024). United Nations Scientific Committee on the Effects of Atomic Radiation. (10/07/2024 tarihinde https://www.unscear.org adresinden ulaşılmıştır).

USEPA (2008). Environmental Protection Agency. Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining. Volume 1: Mining and Reclamation Background. Washington: USEPA.

Valković V. (2000). Radioactivity in the Environment, Elsevier.

Waltar, A. (2024). The medical, agricultural, and industrial applications of nuclear technology, 2003. (13/05/2024 tarihinde http://www.laradioactivite.com/site/pages/RadioPDF/Waltar.pdf adresinden ulaşılmıştır).

Wang, O., Song, J., Li, X., Yuan, H., Li, N., Cao, L. (2015). Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China. Marine Pollution Bulletin, 97, 506-511.

WHO (2024). World Health Organization. (17/07/2024 tarihinde https://www.who.int adresinden ulaşılmıştır).

Sayfalar

139-170

Yayınlanan

9 Aralık 2025

Lisans

Lisans