Ağır Metallerin Topraklardaki Değişim ve Dönüşümü

Yazarlar

Veli Uygur

Özet

Sonsuz toprak çeşitliliğinde ve özelikleri birbirinden son derece farklı ağır metallerin topraklardaki döngüsü son derece karmaşık süreçleri içermektedir. Bu değişkenlik koşullarında, toprağa girdikten sonra her bir toprağa özgü kısa vadede adsorpsiyon/desorpsiyon özellikleri çerçevesinde ağır metallerin davranışlarında değişim olurken; uzun vadede çökelme-çözünme, oksidasyon-reduksiyon, şelatlaşma reaksiyonları gibi kimyasal olaylar etken olmaktadır. Çökelme reaksiyonlarında termodinamik stabilite esaslı mineral fazların oluşma eğilimi yüksektir. Doğal koşullarda uzun ya da kısa vadeli su bütçesindeki değişimler redoks reaksiyonları vasıtasıyla mineral fazlar arasında geçişlere ya da artan çözünürlüğe neden olabilmektedir. Gerek toprak organik maddesinin çözünürlüğü yüksek fraksiyonları gerekse tarımsal faaliyetler ile toprağa dahil olan şelatlayıcılarda toprakta metalin döngüsünde ve hareketliliğinde kritik öneme sahiptir. Kirleticilerin topraklardaki davranışı, ancak döngüyü etkileyen faktörlerin element bazlı olarak kontrol edilmesiyle mümkün olabilmektedir. Bu da ağır metallerin topraklarda operasyonel olarak tanılanmış farklı fraksiyonlardaki dağılımının incelenmesiyle mümkün olabilir ki bu kirlilik yönetiminde etkin bir araç olarak kullanılabilir.

Referanslar

Ademiluyi FT, Nze JC. Sorption characteristics for multiple adsorptions of heavy metal ions using activated carbon from Nigerian bamboo. J Mat Sci Chem Eng. 2016; 4: 39-48.

Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater. 2020; 393: 122383.

Arbestain MC, Rodríguez-Lado L, Bao M, et al. Assessment of mercury-polluted soils adjacent to an old mercury-fulminate production plant. Appl Environ Soil Sci. 2009; 1–8.

Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017; e3039817

Allen, V., Barker, A.V., Pilbeam, D.J. (2015). Handbook of plant nutrition. CRC Press, Boca Raton.

Bacon JR, Davidson CM. Is there a future for sequential chemical extraction? Analyst 2008; 133(1): 25-46.

Balan. E., Saitta, A.M., Mauri, F., et al. (2001). First-principles modeling of the infrared spectrum of kaolinite. In: American mineralogist, pp. 1321–1330.

Bartlett, R.J., Ross, D.S. 2005. Chemistry of redox processes in soils. In MA Tabatabai & DL Sparks (eds), Chemical processes in soils (pp. 461–487). Madison, WI: Soil Science Society of America.

Becquer T, Quantin C, Sicot M, et al. Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ. 2003; 301(1-3): 251–261.

Benzaoui T, Selatnia A, Djabali D. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorpt Sci Technol. 2017; 1– 16.

Bigham, J., Fitzpatrick, M.R.W., Schulze, D.G. (2002). Iron oxides. In JB Dixon & DG Schulze (eds), Soil Mineralogy with Environmental Applications (pp. 323–366). SSSA Book Series 7. Madison, WI: SSSA.

Bolster, C.H. (2007). https://www.ars.usda.gov/midwest-area/bowling-green-ky/food-animal-environmental-systems-research/people/carl-bolster/sorption-isotherm-spreadsheet.

Brown, D.S., Allison, J.D. (1987). MINTEQA1, an equilibrium metal spe-ciation model: Users Manual. EPA/600/3-87/012. U.S. Environ. Protect. Agency, Athens, GA.

Butnariu M. The heavy metal equilibrium in the soil. J Ecosys Ecograph. 2012; 2:e103. doi:10.4172/2157-7625.1000e103.

Calabro, P.S. Impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments. Environ Technol. 2010; 31(11): 1255-62.

Calmano W, Hong J, Forstner U. Binding and mobilization of heavy-metals in contaminated sediments affected by pH and redox potential. Water Sci Technol.1993; 28(8-9): 223-235.

Chitrakar R, Makita Y, Sonoda A. Cesium adsorption by synthetic todorokite type manganese oxides. Bull Chem Soc Jpn. 2014; 87: 733–739.

Colombo C, Iorio E di, Liu Q, et al. Iron oxide nanoparticles in soils: environmental and agronomic importance. J Nanosci Nanotech. 2018; 18(1): 761–761.

Çelebi O, Üzüm Ç, Shahwan T, et al. A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater. 2007; 148(3): 761-767.

Costa ETS, Guilherme LRG, Curi N, et al. Subproduto da indústria de alumínio como amenizante de solos contaminados com cádmio e chumbo. Rev Bras Ciên Sol. 2008; 32(6): 2533–2546.

Costa ETS, Guilherme, LRG, Lopes G. et al. Mono- and multielement sorption of trace metals on oxidic industrial by-products. Water Air Soil Pollut 2012; 223: 1661–1670.

Cui H, Ren W, Lin P, et al. Structure controlsynthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J Exp Nanosci. 2013; 8: 7-8, 869-875,

Dada AO, Ojediran JO, Okunola AA, et al. Modeling of biosorption of Pb(Ii) and Zn(Ii) ions onto pamrh: Langmuir, Freundlich, Temkin, Dubinin-Raduskevich, Jovanovic, FloryHuggins, Fowler-Guggenheim and Kiselev comparative isotherm studies. Int J Mech Engin Tech. 2019; 10(2): 1048-1058.

Datta SK (1981) Principles and practices of rice production. New York: Wiley Interscience.

Davies, G., Ghabbour, E.A., Cherkasskiy, A., et al. (2001). Tight metal binding by solid phase peat and soil humic acids. In CE Clapp, MHB Hayes, N Senesi, et al. (Eds), Humic substances and chemical contaminants (pp. 371–395). Madison, WI: SSSA.

De Boer, J.H. (1953). The dynamical character of adsorption. Oxford: Oxford University Press.

Dhaliwal SS, Dubey SK, Kumar D, et al. Enhanced organic carbon triggers transformations of macronutrients, micronutrients, and secondary plant nutrients and their dynamics in the soil under different cropping systems-A review. J Soil Sci Plant Nutr. 2024. https://doi.org/10.1007/s42729-024-01907-6

Dixon, J.B., White, G.N. (2002). Manganese oxides. In JB Dixon & DG Schulze (Eds), Soil mineralogy with environmental applications (pp. 367–388). SSSA Book Series 7. Madison, WI: SSSA.

Dong W, Wang R, Li H, et al. (2023). Effects of chelating agents addition on ryegrass extraction of cadmium and lead in artificially contaminated Soil. Water, 2023; 15(10): 1929.

Dong HC, Yoneda M, Feng L. Risk dynamic evolution index based on fraction transformation and its application to site risk assessment. J Hazard Mater. 2021; 412.

Dubrovina TA, Losev AA, Karpukhin MM, et al. (2021). Gypsum soil amendment in metal-polluted soils-an added environmental hazard. Chemosphere. 2021; 281.

Ebelegi, AN, Ayawei N, Wankasi D. Interpretation of adsorption thermodynamics and kinetics. Open J Physic Chem. 2020; 10: 166- 182.

Edet UA, Ifelebuegu AO. Kinetics, isotherms, and thermodynamic modelling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes. 2020; 8 (6): 665.

Ehiomogue P, Ahuchaogu I, Ahaneku I. Review of adsorption isotherms models. ACTA Tech Corv – Bul Engin, 2022; 4: 87-96.

Ennaciri Y, Bettach M, Cherrat A, et al. Conversion of phosphogypsum to sodium sulfate and calcium carbonate in aqueous solution. Mater Environ Sci. 2016; 7 (6): 1925-1933.

Erdogan S, Baysal A, Akba O, et al. Interaction of metals with humic acid isolated from oxidized coal. Pol J Environ Stud. 2007; 16, 671–675

Evangelou MW, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 2007; 68(6): 989-1003.

Farmer VC. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochim Acta A-M. 2000; 56 (5): 927–930.

Fedotov PS, Spivakov BY. Static and dynamic methods of fractionation of forms of the elements in soils, silts and bottom sediments. Uspekhi Khimii. 2008; 77(7): 690-703.

Flieger J, Kawka J, Płaziński W, et al. Sorption of heavy metal ıons of chromium, manganese, selenium, nickel, cobalt, iron from aqueous acidic solutions in batch and dynamic conditions on natural and synthetic aluminosilicate sorbents. Materials. 2020; 13(22): 5271.

Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Engin Sci. 1974; 29(5): 1279–1282.

García EM, Bastidas C, Cruz-Motta JJ, et al. Metals in waters and sediments of the Morrocoy National Park, Venezuela: Increased contamination levels of Cd over time. Water Air Soil Poll. 2011; 214(1-4): 609-621.

Gökmen F, Uygur V. (2022a).Topraklarda şelat dengesi. Ü Ayata (Ed), Ziraat & Orman, Su Ürünlerinde Araştırma ve Değerlendirmeler içinde (s 17-44). Ankara: Gece Publishing.

Gökmen F, Uygur V. (2022b). Bahçe bitkilerinde mikroelement gübreleme stratejileri. NT Güneş, Mİ Odabaşıoğlu, F İşlek (Eds), Bahçe Bitkileri Faaliyetlerinde Yenilikçi Yaklaşımlar-2 (s. 143-164). Adıyaman: Iksad Publications.

Gondar D, López R, Fiol S, et al. Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma 2006; 135: 196-203.

Graham RD, Welch RM, Saunders DA, et al. Nutritious subsistence food systems. Adv Agron. 2007; 92: 1–74.

Guren MG, Putnis CV, Montes-Hernandez G, et al. Direct imaging of coupled dissolution-precipitation and growth processes on calcite exposed to chromium-rich fluids. Chem Geol. 2020; 19770.

Gustafsson K, Karlberg GS, Andersson S. Infrared spectroscopy of physisorbed and chemisorbed N2 in the Pt(111)(3x3)N2 structure. J Chem Phys. 2007; 127(19): 194708.

Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007; 147(1-2): 381–394.

Han FX. 2007. Biogeochemistry of trace elements in arid environments. Dordrecht: Springer.

Han FX, Banin A, Su Y, et al. 2002. Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften. 2002; 89: 497–504.

Han FX, Su Y, Monts DL, et al. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 2003; 90: 395–401.

He G, Pan G, Zhang M, et al. 2011. Coordination structure of adsorbed Zn(II) at water–TiO2 interfaces. Environ Sci Technol. 2011; 45 (5): 1873–1879.

Hill TL. Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption. J Chem Phys. 1946; 14 (7): 441–453.

Huang LH, Yu CH, Hopke PK, et al. Trivalent chromium solubility and its influence on quantification of hexavalent chromium in ambient particulate matter using EPA method 6800. JAWMA. 2014; 64(12): 1439-1445.

Huang, P.M., Wang, M.K., Kämpf, N., et al. (2002). Aluminum hydroxides. In JB Dixon & DG Schulze (Eds), Soil mineralogy with environmental applications (pp. 261–289). SSSA Book Series 7. Madison, WI: SSSA.

Hubbe MA, J. Park J, Park S. Cellulosic substrates for removal of pollutants from aqueous systems: A review. Part 4. Dissolved petrochemical compounds. BioResour. 2014; 9(4): 7782–7925.

Husson O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil. 2013; 362(1-2): 389-417.

Jakubus M, Graczyk M. Availability of nickel in soil evaluated by various chemical extractants and plant accumulation. Agronomy-Basel 2020; 10(11): 1805.

Jozanikohan G, Abarghooei MN. 2022. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J Pet Explor Prod Technol, 2022; 12: 2093–2106.

Julien CM, Massot M, Poinsignon C. Lattice vibrations of manganese oxides - Part 1. Periodic structures. Spectrochim Acta A-M. 2004; 60(3): 689-700.

Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. Florida: CRC Press.

Karlsson T, Persson P, Skyllberg U. Complexation of copper(II) in organic soils and in dissolved organic matter - EXAFS evidence for chelate ring structures. Environ Sci Technol. 2006; 40(8): 2623-2628.

Karlsson T, Persson P. Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy. Geochim Cosmochim Acta, 2010; 74(1): 30-40.

Keçeci M, Usta S, Uygur V. Lead adsorption in soils and the effect of soil properties: case study from Turkey. Environ Earth Sci. 2020; 79(18): 416.

Koble RA, Corrigan TE. Adsorption isotherms for pure hydrocarbons. Indust Engin Chem. 1952; 44(2): 383–387.

Kozerozhets IV, Panasyuka GP, Semenova EA, et al. Effect of alkaline medium on hydrothermal synthesis of boehmite. Russ J Inorg Chem. 2021; 66 (3): 427–432.

Kosmulski M. 2023. The pH dependent surface charging and points of zero charge. X. Update. Adv Coll Interface Sci. 2023; 319: 102973.

Kosmulski M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Coll Interface Sci. 2009; 152(1-2): 14-25.

Kumara PS, Ramalingamb S, Kiruphac SD, et al. Adsorption behaviour of Ni(II) onto cashew nut shell: in equilibrium, thermodynamics, kinetics, mechanism and process design. Chem Engin J. 2011; 167 (1): 122–131.

Krupka, K.M., Serne, R.J. 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Washington: Pacific Northwest National Laboratory Richland.

Li FH, Yin T, Zhu W, et al. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. Eco-Environ Health 2024; 3(1): 89-106.

Li X, Azimzadeh B, Martinez CE, et al. Pb mineral precipitation in solutions of sulfate, carbonate and phosphate: measured and modeled pb solubility and Pb2+ activity. Minerals, 2021; 11(6): 620.

Lindsay, W.L. (2001). Chemical Equilibria in Soils. New Jersey: The Blackburn Press.

Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003; 31(1): 1–10.

McDowell LR (2003) Minerals in animals and human nutrition (2nd Edition). Amsterdam Elsevier Science BV.

McKenzie ER, Money JE, Green PG, et al. Metals associated with stormwater-relevant brake and tire samples. Sci Total Environ. 2009; 407(22): 5855-60.

McKenzie RM. Adsorption of lead and other heavy-metals on oxides of manganese and iron. Aust J Soil Res. 1980; 18(1): 61-73.

McPhail, D.C., Summerhayes, E., Welch, S., et al. (2003) The geochemistry of zinc in the regolith. In IC Roach (Ed.), Advances in Regolith (pp. 287-291). CRC for Landscape Environments and Mineral Exploration.

Nayak PS, Singh BK. Instrumental characterization of clay by XRF, XRD and FTIR. Bull Mater Sci. 2007; 30: 235–238.

Nizam T, Krishnan KA, Joseph A, et al. Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn(II), Pb(II) and Cr(VI) onto MgFe2O4 nanoparticles. Groundw Sustain Dev. 2024; 25: 101120.

Nordstrom, D.K., Plummer, L.N., Wigley, T.M.L. (1979). A comparison of com-puterized chemical models for equilibrium calculations in aqueous systems. In EA Jenne (Ed.), Chemical modeling in aqueous systems (pp. 857-892). Washington: Am Chern Soc.

Ören, S. (2023). Su baskını ve organik madde etkileşiminin tetiklediği redoks potansiyelindeki değişimlerin topraklarda bitki besin elementleri yarayışlılığına, fosfor ve çinko adsorpsiyonuna etkisi. Isparta: ISUBÜ Yükseklisans Enstitüsü, Doktora Tezi.

Ören S, Uygur V, Sukuşu E. (2018). Farklı özelliklerdeki topraklarda redoks potansiyelindeki değişimlerin Fe ve Mn yarayışlılığına etkisi. Mediterran Agric Sci.2018; 31(3): 301-309.

Parker JrGR. 1995. Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption 1995; 1(2): 113–132.

Parkhurst, D.L., Thorstenson, D.C., Plummer, L.N. (1982). PHREEQE-Acomputer program for geochemical calculations. Rep. WRI-80-96. Reston, VA: US Geol Surv.

Patrick, J.W.H., Reddy, C.N. (1978) Chemical changes in rice soils. In IRRI (Ed), Soils and Rice (pp. 361-379). Manila: The International Rice Research Institute.

Peters RW. Chelant extraction of heavy metals from contaminated soils. J Hazard Mater. 1999; 66(1-2): 151–210.

Piccin JS, Dotto GL, Pinto LAA. Adsorption isotherms and thermochemical data of Fd&C red N 40 binding by chitosan. Bras J Chem Eng. 2011; 28: 295–304.

Poulin BA, Aiken GR, Nagy KL, et al. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochim Cosmochim Acta 2016; 176: 118-138.

Ponizovsky AA, Allen H E, Ackerman AJ. Effect of field aging on nickel concentration in soil solutions. Commun Soil Sci Plan. 2008; 39(3-4): 510-523.

Poot J, Verhaert M, Dekoninck A, et al. Characterization of weathering processes of the giant copper deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco). Minerals 2020; 10: 620.

Ramadoss R, Subramaniam D. Adsorption of chromium using blue-green algae-Modeling and application of various isotherms. Int J Chem Technol. 2018; 10: 1–22.

Rania F, Yousef NS. Equilibrium and kinetics studies of adsorption of copper (II) on natural biosorbent. Int J Chem Engin Applic. 2015; 6: 5.

Rosende M, Savonina EY, Fedotov PS, et al. Dynamic fractionation of trace metals in soil and sediment samples using rotating coiled column extraction and sequential injection microcolumn extraction: a comparative study. Talanta 2009; 79(4):1081-8.

Saalfeld H, Wedde M. Refinement of the crystal structure of gibbsite, A1(OH)3. Z Krist Cryst Mater. 1974; 139: 129–135.

Sánchez-Pastor N., Cruz JA, Gigler AM, et al. Microprobe and Raman investigation of the zoning in synthetic Ca (CO3, CrO4) crystals. Macla 2010; 13: 197–198.

Sahuquillo A, López-Sánchez JF, Rubio R, et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Anal Chim Acta 1999; 382(3): 317-327.

Senesi, N., Loffredo, E. 2005. Metal ion complexation by soil humic substances. In MA Tabatabai & DL Sparks (Eds), Chemical Processes in Soils (pp. 563–617). SSSA Book Series 8. Madison, WI: SSSA.

Seo DC, Yu K, DeLaune RD. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: Batch and column experiments. Chemosphere 2008; 73(11): 1757–1764.

Shahi, M, Shafi S, Aboud MFA, et al. Impacts of Co2+ and Gd3+ co-doping on structural, dielectric and magnetic properties of MnFeO nanoparticles synthesized via micro-emulsion route. Ceram Int. 2017; 43(16): 14096-14100.

Shuman LM. Effect of liming on the distribution of manganese, copper, ıron, and zinc among soil fractions. Soil Sci Soc Am J. 1986; 50(5): 1236-1240.

Siebielec G, Chaney RL. Manganese fertilizer requirement to prevent manganese deficiency when liming to remediate Ni-phytotoxic soils. Commun Soil Sci Plan. 2006; 37(1-2): 163-179.

Sivula K, Zboril R, Le Formal R, et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc. 2010; 3: 7436–7444.

Sogaard, E.G., Madsen, H.T. (2013). Groundwater chemistry and treatment: Application to Danish waterworks. In W Elshorbagy (Ed), Water Treatment (pp. 223-246). Hong Kong: InTech.

Sposito, G. (1984). The surface chemistry of soils. New York: Oxford University Press.

Sposito, G., Mattigod, S.V. (1980). GEOCHEM: A computer program for thecalculation of chemical equilibria in soil solutions and other natural wa-ter systems. Riverside, CA: Kearney Found Soil Sci.

Stevenson, F.J. (1994). Humus chemistry. Genesis, composition, reactions. 2nd Edition. New York: Wiley.

Stevenson, F.J., Ardakani, M.S. (1972). Organic matter reactions involving micronutrients in soils. In Micronutrients in Agriculture (pp. 79-114). Madison, Wisconsin: SSSA.

Qi SQ, Ji HX, Shen DS, et al. Optimization strategies for Cd and Pb immobilization in soil using meta-analysis combined with numerical modeling. Pedosphere 2023; 33(1): 61-73.

Tack FMG, Van Ranst E, Lievens C, et al. Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. Geoderma 2006; 137(1-2): 83-89.

Tani Y, Miyata N, Iwahori K, et al. Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River System, Shizuoka, Japan. Appl Geochem. 2003; 18(10): 1541-1554.

Tornquist A, Valencia E, AlZamora L, et al. The Hill-de Boer equation in the adsorption of water on quartz. J Colloid Interface Sci. 1978; 66(3): 415–420.

Uygur V, Karaduman MA, Kececi M, et al. Competitive adsorption of heavy metals in different soils. Fres Environ Bull. 2017a; 26(10): 6205-6211.

Uygur V, Celik CS, Sukusu E, et al. The Effect of particle size on phosphorus adsorption kinetic and desorption by Turkish natural zeolites. Fres Environ Bull. 2017b; 26(10): 6253-6260.

Uygur V, Rimmer DL. Reactions of zinc with iron-oxide coated calcite surfaces at alkaline pH. Eur J Soil Sci. 2000; 51(3): 511-516.

Vepraskas, M.J., Craft, C.B. (2016). Wetland soils: Genesis, hydrology, landscapes and classification. Boca Raton: CRC press.

Vijayaraghavan K. Biosorption of lanthamide (preseodymium) using ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models. J Environ Biotech Res. 2015; 1(1): 1–8.

Wang YN, Huang ZB, Sheng LL, et al. Effect of modified humic acid residue on the adsorption and passivation of Hg2+/Pb2+ in solution and soil. J Mol Liq. 2023; 377.

Weerasooriya R, Dharmasena B. Pyrite-assisted degradation of trichloroethene. Chemosphere 2001; 42(4): 389-396.

Weerasooriya R, Dharmasena B, Aluthpatabendi D. Copper-gibbsite interactions: an application of 1-pK surface complexation model. Colloids Surf A: Physicochem Eng Asp. 2000; 170(1): 65-77.

Wu Q, Cui Y, Tang X, et al. Extraction of heavy metals from sludge using biodegradable chelating agent N, N-bis (carboxymethyl) glutamic acid tetrasodium. Huanjing Kexue 2015; 36: 1733–1738.

Yang H, Lu R, Downs RT, et al. Goethite, α-FeO(OH), from single-crystal data. Acta Crystallog Sec E. 2006; E62: i250–i252.

Yu HJ, Li CC, Yan J, et al. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. Rsc Advances, 2023; 13(6): 3505-3519.

Yu Q, Ohnuki T, Kozai N, et al. Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chem Geol. 2017; 470: 141–151.

Ziemniak SE, Jones ME, Combs KES. Solubility and phase behavior of Cr(III) oxides in alkaline media at elevated temperatures. J Solut Chem. 1998; 27(1): 33–66.

Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ. 2001; 266(1-3): 195-202.

Sayfalar

77-116

Yayınlanan

9 Aralık 2025

Lisans

Lisans