Antropojenik Toprak Kirlilik Kaynakları Kentleşme, Sanayi ve Tarım Kökenli Toprak Kirliliği

Yazarlar

Ayşegül Demir Yetiş
Hatice Kara
Fadime Yetiş
Ayşin Bilgili

Özet

Bu bölümde toprak kirliliğine neden olan kentleşme, sanayi ve tarım kökenli antropojenik kirletici kaynakları ve toprak üzerindeki zararlı etkilerine değinilmiştir. Bu çerçevede kentleşme sürecinde doğal alanlara yerleşim yerlerinin kurulması, evsel ve endüstriyel katı atıkların toprağa bırakılması ve uygun olarak arıtılmamış kanalizasyon suları toprak yapısını fiziksel ve kimyasal olarak etkilemektedir. Sanayileşme sürecinde madencilik ile toprak kirleticileri artış göstermiştir. Çeşitli endüstriyel üretimler ve metal eriticiler nedeniyle ağır metaller toprak içerisine sızarak toprağın yapısını bozmuştur. Tarımsal anlamda ise yoğun gübre ve pestisit kullanımları toprak içerisinde tuzluluk, asitlik oranlarının değişmesine ve biyoçeşitliliğin yok olmasına neden olmuştur. Ayrıca tarımsal faaliyetlerde yoğun kullanılan pestisit türlerinden insektisit, fungusit ve herbisitlerin toprağın kimyasal ve biyolojik yapısını bozduğu ve besin zincirine karışmalarından dolayı insan sağlığını tehdit ettiği ifade edilmiştir. Sonuç olarak antropojenik faaliyetlerin toprak kirliliğinin temel nedenleri arasında yer aldığı ve toprak kirliğinin ekosistem dengesi, çevre ve insan sağlığı üzerinde önemli risklere neden olduğu belirtilmiştir. Bununla birlikte entegre pestisit kullanım prensipleri ve uygun atık yönetimi ile toprak kirliliğinin azaltılacağı vurgulanmıştır.

Referanslar

Ahmad M.F., Ahmad, F. A. Alsayegh, A.A., Zeyaullah, M., AlShahrani, A. M. Muzammil, K., Saati, A. A., Wahab, Ehab, S., Elbendary, Y., Kambal, N., Abdelrahman, M. H., Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10: 7.

Akseki H. (2011). Kentsel Yayılmanin Tarım Arazileri Üzerindeki Etkisi, Konya Kenti Örneği. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Şehir Ve Bölge Planlama Anabilim Dalı, Konya

Aktar W, Sengupta D, Chowdhury A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2(1):1-12.

Aksoy, H. (2020). Tarım ve çevre kirliliği: Kimyasal gübrelerin toprak ekosistemi üzerindeki etkileri. Tarım Bilimleri Dergisi, 12(2), 45-57

Algan, F. T. K., & Bilen, S. (2005). Toprak kirlenmesi ve biyolojik çevre. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(1), 83-88.

Altan, Y., & Bilen, S. (2003). Toprak kirliliği ve nedenleri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 34(1), 91–98.

Altınbaş, Ü., Çengel, M., Uysal, H., Okur, B., Okur, N., Kurucu, Y. & Delibacak, S., 2004. Toprak Bilimi. Ege Üniv. Ziraat Fak. Yayınları, No:557, İzmir, 355s.

Anonim, (2023). Tarım & Orman Bakanlığı, Gıda Kontrol Genel Müdürlüğü, Bitki Koruma Ürünleri Veri tabanı. (also available at: https://www.tarimorman.gov.tr/GKGM/Belgeler/DB_Bitki_Koruma_Urunleri/Istatistik/Il_Duzeyinde_BKU_Kullanim_Miktar_2023.pdf. (Erişim tarihi: 07.10.2024).

Anonim, (2024a). (https://topraktema.org/media/1490/05-toprak-kirliligi.pdf)(Erişim tarihi 24.10.2024)

Anonim, (2024b). Ankara Üniversitesi Ders Notları, Toprak Kirliliği, 7. Bölüm, Ankara, 24 s.

Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.- C. & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4): 247–260.

Bai, J., Huang, L., Yan, D., Wang, Q., Gao, H., Xiao, R., & Huang, C. (2011). Contamination characteristics of heavy metals in wetland soils along a tidal ditch of the Yellow River Estuary, China. Stochastic Environmental Research and Risk Assessment, 25, 671-676.

Baker, M. A., & Sutherland, T. M. (2019). "Environmental impacts of organochlorine pesticides in agricultural soils." Environmental Pollution, 250, 1075-1085.

Baker, N. R., & P. R. W. (2018). "Organophosphates: Environmental and health impacts." Environmental Toxicology and Chemistry, 37(2), 377-385.

Baldi E, Miotto A, Ceretta CA, Brunetto G, Muzzi E, Sorrenti G, Quartieri M & Toselli M. (2018a). Soil application of P can mitigate the copper toxicity in grapevine: physiological implications. Scientia Horticulturae 238: 400–407.

Baldi E, Miotto A, Ceretta CA, Quartieri M, Sorrenti G, Brunetto G& Toselli M. (2018b). Soil applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Scientia Horticulturae 227: 102–111.

Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. (2019). Current state and dynamics of heavy metal soil pollution in Russian Federation- A review, Environmental Pollution. 249: 200-207, https://doi.org/10.1016/j.envpol.2019.03.020.

Baweja, P., Kumar, S. & Kumar, G. (2020). Fertilizers and Pesticides: Their Impact on Soil Health and Environment. Soil Health, Soil Biology 59.

Birch, G.F., Vanderhayden, M. & Olmos, M. (2011). The nature and distribution of metals in soils of the Sydney Estuary Catchment, Australia.Water Air Soil Pollut. 216, 581-604.

Bitew, Y. & Alemayehu, M. (2017). Impact of Crop Production Inputs on Soil Health. Asian Journal of Plant Sciences. 16: 109-131.

Bleam, W. F. (2016). Soil and environmental chemistry. Academic Press.

Brochado, C., Silva, M., Costa, A. & Ferreira, J. (2023). Impact of herbicide application on nitrogen cycling and microbial activity in different soil types. Journal of Soil Biology and Biochemistry, 178, 108961.

Cambrollé, J., García, Fernández JL, Ocete, R., Figueroa, E. & Cantos, M. (2013). Growth and photosynthetic responses to copper in wild grapevine. Chemosphere 93: 294–301.

Çelik, M., & Şahin, O. (2018). Kentleşmenin Toprak Kirliliğine Etkisi. Çevre Bilimleri Dergisi, 12(2), 89-102.

Changsheng Qu, Wei Shi, Jing Guo, Binbin Fang, Shui Wang, John P. Giesy, and Peter E. Holm (2016). China’s Soil Pollution Control: Choices and Challenges Environmental Science & Technology 2016 50 (24), 13181-13183. DOI: 10.1021/acs.est.6b05068

Delang, C. O. (2017). Causes and distribution of soil pollution in China. Environmental & Socio-economic Studies, 5(4), 1-17. https://doi.org/10.1515/environ-2017-0016

Erdoğan, N. (2019). Toprak kalitesi ve kimyasal gübrelerin uzun vadeli etkileri. Tarım Teknolojileri Dergisi, 6(4), 25-39

Erdoğan, S. (2005). Tarımda gübre kullanımının çevresel etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 42(1), 1-10.

FAO & ITPS. (2017). Global assessment of the impact of plant protection products on soil functions and soil ecosystems. Rome, Italy, Food and Agriculture Organization of the United Nations. (also available at http://www.fao.org/3/I8168EN/i8168en.pdf).

FAO. (2000). Assessing soil contamination A reference manual. Rome, Italy, Food and Agriculture Organization of the United Nations. (also available at http://www.fao.org/docrep/003/X2570E/X2570E00.HTM).

FAO. (2015). FAO statistical pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization of the United Nations Statistics.

FAO. (2018). FAO (Food and Agriculture Organization of The United Nations) Reports, Soil Pollution: A Hidden Reality. Rome, 2018. ISBN 978-92-5-130505-8.

FAO. (2024). FAO Publications (www.fao.org | publications@fao.org), Chapter 3. Sources of Soil Pollution. https://openknowledge.fao.org/server/api/core/bitstreams/fe5df8d6-6b19-4def-bdc6-62886d824574/content/src/html/chapter-03-3.html. (Erişim tarihi: 15.11.2024).

Friis, C. (2019). Telecoupling: A new framework for researching land-use change in a globalised world. Telecoupling: Exploring Land-Use Change in a Globalised World, 49-67.

Gong, Q., Wang, L., Dai, T., Zhou, J., Kang, Q., Chen, H., Li, K. & Li Z. (2019). Effects of copper on the growth, antioxidant enzymes and photosynthesis of spinach seedlings. Ecotoxicology and Environmental Safety 171: 771–780.

Gulshan, A., & Singh, S. (2020). "Degradation of carbamate pesticides by microbial enzymes." Bioremediation Journal, 24(3), 231-245.

Hashim, S. H., Ahmed, A. S., & Rashid, N. (2024). Effects of soil moisture on the behavior and impact of herbicides in soil microbial communities. Environmental Science and Pollution Research, 31(2), 432-445.

Havugimana, E., Bhople, B. S., Kumar, A., Byiringiro, E., Mugabo, J. P., & Kumar, A. (2017). Soil pollution–major sources and types of soil pollutants. Environ. Sci. Eng. 11, 53–86.

Huang, X., & Zhang, X. (2021). "Impact of pesticides on soil physical and chemical properties and erosion risk." Soil and Tillage Research, 212, 105068.

İbadullayeva, J. Jumaniyazova, K. Azimzadeh, S. Canıgür S. & Ferhan, E. (2019). Çevre kirliliğinin insan sağlığı üzerindeki etkileri.

Kacar, B. & Katkat, A. V. (2007). Gübreler ve Gübreleme Teknikleri. Nobel Yayıncılık.

Kadi, M. W. (2009). “Soil Pollution Hazardous to Environment”: A case study on the chemical composition and correlation to automobile traffic of the roadside soil of Jeddah city, Saudi Arabia, Journal of Hazardous Materials, 168, (2–3): 1280-1283, https://doi.org/10.1016/j.jhazmat.2009.03.015.

Kafkasyalı, D. (2021). Bakır Toksisitesinin Bitkilerde Fizyolojik, Morfolojik, Biyokimyasal ve Transkripsiyonel Düzeydeki Etkileri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, Nisan (2021), 47(1), 16-34. DOI: 10.35238sufefd.857192.

Karaca, A., & Turgay, O. C. (2012). Toprak kirliliği. Toprak Bilimi ve Bitki Besleme Dergisi, 1(1), 13-19.

Karaca, B. (2021). Kimyasal gübrelerin çevre üzerindeki olumsuz etkileri ve alternatif çözümler. Tarımsal Çevre Çalışmaları, 9(2), 66-79.

Kaur, R., Choudhary, D., Bali, S., Bandral, S.S., Singh, V., Ahmad M. A., Rani, N. & Balakumar, T. G. (2024). Pesticides: An alarming detrimental to health and environment. Science of The Total Environment. 915:170113.

Kayhan, F. E. (2020). İnsektisitlerin doğal döngüsü ve doğal çevreye etkileri. S. Ü. Fen Fakültesi Fen Dergisi. 46(2), 29-40.

Klein, R. G., & Ristaino, J. B. (2021). "Integrated weed management strategies in organic agriculture: current practices and future directions." Sustainability, 13(4), 1748.

Knoepp JD, Debano LF & Neary DG. (2005). Soil Chemistry. Wildland fire in ecosystem, 42(4).

Koçak, B. & Cenkseven, Ş. (2021). Şeker Pancarında Kullanılan İki Farklı Triazol Fungisidin Toprak Mikrobiyal Solunumuna Etkileri. Journal of Anatolian Environmental and Animal Sciences. Year: 6, No: 4, 2021 (540-547). DOI: https://doi.org/10.35229/jaes.946632.

Kopittke P, Pax C Blamey F, McKenna B, Wang P & Menzies N (2011). Toxicity of metals to roots of cowpea in relation to their binding strength. Environ Toxicol Chem 30: 1827–1833.

Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T. & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland), Environmental Pollution, 218: 1023-1036, https://doi.org/10.1016/j.envpol.2016.08.053.

Kumar A, Gahoi P & Verma N. (2019). Simultaneous scavenging of Cr (VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere 124760.

Kumar A, Huang B. & Sivapatham P. (2000). Soil pH affects copper fractionation and phytotoxicity. Soil Science Society of America Journal- SSSAJ 64.

Kumar, A., & Gupta, A. (2022). "Soil aggregate stability and its relationship with pesticide application." Journal of Soil Science and Plant Nutrition, 22(1), 1-15.

Kumar, V., & Bansal, R. (2022). "Toxicological effects of abamectin and chlorantraniliprole on non-target organisms: A review." Environmental Toxicology and Pharmacology, 84, 103628.

Lado, L.R., Hengl, T. & Reuter, H.I. (2008). Heavy metals in European soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma 148, 189-199.

Latha, K. (2010). "Impact of herbicides on soil health and microbial populations." Journal of Environmental Biology, 31(5), 791-796

Lee, C.S.L., Lia, X.D., Zhang, G., Lib, J., Dinga, A.J. & Wanga, T. (2007). Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China e evidence of the long-range transport of air contaminants. Atmos. Environ. 41, 432-447.

Loska, K., Wiechulab, D. & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environ. Int. 30, 159-165.

Lwalaba JLW, Louis LT, Zvobgo G, Fu L, Mwamba TM, Mukobo Mundende RP & Zhang G. (2019). Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals. Ecotoxicology and Environmental Safety 180: 234–241.

Marques DM, da Silva AB, Mantovani JR, Magalhães PC, de Souza TC (2019). Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub. (Caesalpinioideae) exposed to copper-induced toxicity. South African Journal of Botany, 121: 186–192.

Marrone, P. G. (2019). "Pesticides and the environment: A new approach to sustainability." Journal of Agricultural and Food Chemistry, 67(11), 3121-3129.

Meena, V. S., Yadav, G. S., & Singh, P. (2020). "Impact of triazine and organophosphate herbicides on soil organic matter and microbial activity." Journal of Environmental Management, 261, 110248.

Michaud A, Chappellaz C. & Hinsinger P. (2008). Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant and Soil 310:151–165.

Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C. & Chambers, B.J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 311, 205-219.

Peña, A., Delgado-Moreno, L., & Rodríguez-Liébana, J. A. (2020). A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Science of the Total Environment, 718, 134468.

Pertile, F. (2020). "Effects of imazethapyr and flumioxazin on soil microbial biomass and enzyme activity." Soil Biology and Biochemistry, 143, 106425.

Pouyat, R.V., Yesilonis, I.D., Russell-Anelli, J. & Neerchal, N.K. (2007). Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Water Manag. Conserv. 71 (3), 1010-1019.

Qu, C., Shi, W., Guo, J., Fang, B., Wang, S., Giesy, J. P., & Holm, P. E. (2016). China’s soil pollution control: choices and challenges. Environmental Science & Technology, 50 (24) (2016), pp. .13181-.13183.

Raldugina G, Krasavina M, Fjodorovna Lunkova N, Anatoljevna Burmistrova N. (2016). Resistance of Plants to Cu Stress 69–114.

Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Negrel, Ph., Oorts, K., Matschullat, J. & Caritat, P. (2018). GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 88, 302-318.

Rose T, Kretzschmar T, Liu L, Lancaster G. & Wissuwa M. (2016). Phosphorus deficiency alters nutrient accumulation patterns and grain nutritional quality in rice. Agronomy 6, 52.

Ruuskanen, J. (2022). "Herbicide impacts on non-target organisms and soil microbial communities." Environmental Science and Pollution Research, 29(1), 123-135.

Sakshi, Singh, S.K. & Haritash, A.K. (2019). Polycyclic aromatic hydrocarbons: soil pollution and remediation. Int. J. Environ. Sci. Technol. 16, 6489–6512. https://doi.org/10.1007/s13762-019-02414-3

Samanth, M. (2024). An inclusive evaluation of soil pollution and its remediation by chemical, physical and biological methods. IJCS, 12(4), 05-17.

Sanders, P.F. (2003). Ambient levels of metals in New Jersey soils. Environmental Assessment and Risk Analysis Element. Research Project Summary. NJDEP. Division of Science Research & Technology, 5.

Sekulic, A., Stankovic, A., & Djuric, V. (2023). Effect of single and mixture of insecticides on earthworms: results from field and laboratory experiments. Environmental Science and Pollution Research, 30(12), 35456-35469.

Shaw, R. K, Wilson, M.A., Reinhardt, L.& Isleib, J. (2010). Geochemistry of artefactual coarse fragment types from selected New York City soils. In: World Congress of Soil Science, Soil Solutions for a Changing World, 1e6 August 2010, Brisbane, Australia, 25-27.

Sheldon A. & Menzies N (2005). The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil 278: 341–349.

Sheridan, A. B., Johnson, E. J., Vallat-Michel, A. J., Glauser, G., Harris, J. W., Neumann, P. & Straub, L. (2023). Thiamethoxam soil contaminations reduce fertility of soil-dwelling beetles, Aethina tumida. Chemosphere. 339: 139648.

Singh D. & Kumar A. (2016). Impact of ırrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bulletin of Environmental Contamination and Toxicology 97.

Singh, D.K., (2012). Toxicology: Agriculture And Environment: Pesticide Chemistry And Toxicology. BENTHAM SCIENCE PUBLISHERS. (also available at http://www.eurekaselect.com/50654/volume/1).

Tiryaki, O., Canhilal, H. & Horuz, S. (2010). Tarım ilaçları kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(2): 154-169.

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C. & Phung, DT. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health.27;18(3):1112. doi: 10.3390/ijerph18031112.

Ullrich, S.M., Ramseya, M.H. & Helios-Rybicka, E. (1999). Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Appl. Geochem. 14, 187-196.

Verma, A., Gupta, A., & Rajamani, P. (2023). Application of wastewater in agriculture: benefits and detriments. In River Conservation and Water Resource Management (pp. 53-75). Singapore: Springer Nature Singapore.

Vesilind, P. A., Morgan, S. M., Heine, L. G., & Toröz, İ. (2012). Çevre mühendisliğine giriş. Nobel Akademik Yayıncılık.

Vieira, D., Franco, A., De Medici, D., Martin Jimenez, J., Wojda, P. & Jones, A. (2023). Pesticides residues in European agricultural soils. Results from LUCAS 2018 soil modüle. European Commission JRC Technical Report by the Joint Research Centre (JRC). 62 p. ISBN 978-92-68-05371-3. ISSN 1831-9424. doi:10.2760/86566.

Ware, G.W. & Whitacre, D.M. (2004). The Pesticide Book. Meister Publications, Willoughby.

Wei, B. & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 94, 99-107.

Weldeslassie, T., Naz, H., Singh, B., & Oves, M. (2018). Chemical contaminants for soil, air and aquatic ecosystem. Modern age environmental problems and their remediation, 1-22.

Wiseman, C. L., Zereini, S. F., & Püttmann,W. (2015).Metal and metalloid accumulation in cultivated urban soils: a mediumterm study of trends in Toronto, Canada. The Science of the Total Environment, 15, 564–572.

Yadav P, Kaur R, Kanwar MK, Sharma A, Verma V, Sirhindi G. & Bhardwaj R. (2018). Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicology and Environmental Safety 147: 725–734.

Yaron, B., Dror, I., & Berkowitz, B.. (2012). Soil-subsurface change Springer-Verlag, Berlin.

Yıldırım, E., 2008. Tarımsal Zararlılarla Mücadele Yöntemleri ve Kullanılan İlaçlar. Atatürk Üniv. Ziraat Fak. Yayınları, No:219, Erzurum, 350 s.

Yıldırım, E., & Demir, K. (2022). Gübreleme ve sürdürülebilir tarım: Çevresel boyutlar. Tarımsal Çalışmalar Dergisi, 14(4), 39-53.

Zeng, S., Ma, J., Yang, Y., Zhang, S., Liu, G. J., & Chen, F. (2019). Spatial assessment of farmland soil pollution and its potential human health risks in China. Science of the total environment, 687, 642-653.

Zhang, G.L., Yang, F.G., Zhao, Y.G., Zhao, W.J., Yang, J.L. & Gong, Z.T. (2005). Historical change of heavy metals in urban soils of Nanjing, China during the past 20 centuries. Environ. Int. 31, 913-919.

Zhou, J., & Wang, J. (2021). "Impact of insecticides on soil pH and microbial diversity." Environmental Science and Pollution Research, 28(20), 25788-25797.

Zwolak, A., Sarzyńska, M., Szpyrka, E. et al. (2019). Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water Air Soil Pollut 230, 164. https://doi.org/10.1007/s11270-019-4221-y

Sayfalar

57-76

Yayınlanan

9 Aralık 2025

Lisans

Lisans