Uykunun Nörofizyolojik Temelleri ve Düzenlenmesi

Yazarlar

Leyla Şahin
Seval Müsüroğlu

Özet

Referanslar

Schwartz, M. D., & Kilduff, T. S. (2015). The neurobiology of sleep and wakefulness. Psychiatric Clinics of North America, 38(4), 615–644. https://doi.org/10.1016/j.psc.2015.07.002

Şahin, L. (2010). Uyku yoksunluğu oluşturulan sıçanlarda elektrodermal aktivite ve davranış değişikliklerinin incelenmesi [Doktora tezi, Erciyes Üniversitesi]. YÖK Tez Merkezi.

Thomas, E. S., de la Iglesia, H. O., & Schwartz, W. J. (2017). Neural circuitry of wakefulness and sleep. Neuron, 93(4), 747–765. https://doi.org/10.1016/j.neuron.2017.01.014

Fisher, S. P., Foster, R. G., & Peirson, S. N. (2013). The circadian control of sleep. In A. Kramer & M. Merrow (Eds.), Circadian clocks (pp. 157–183). Springer.

Mistlberger, R. E. (2005). Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Research Reviews, 49(3), 429–454. https://doi.org/10.1016/j.brainresrev.2005.01.005

Marcheva, B., Ramsey, K. M., Peek, C. B., Affinati, A., Maury, E., & Bass, J. (2013). Circadian clocks and metabolism. In Handbook of experimental pharmacology (Vol. 217, pp. 127–155). Springer. https://doi.org/10.1007/978-3-642-25950-0_6

Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2010). Suprachiasmatic nucleus: Cell autonomy and network properties. Annual Review of Physiology, 72, 551–577. https://doi.org/10.1146/annurev-physiol-021909-135919

Morin, L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Experimental Neurology, 243, 4–20. https://doi.org/10.1016/j.expneurol.2012.06.026

Berson, D. M., Castrucci, A. M., & Provencio, I. (2010). Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. The Journal of Comparative Neurology, 518(13), 2405–2422. https://doi.org/10.1002/cne.22381

Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E., & Saper, C. B. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neuroscience, 4(12), 1165. https://doi.org/10.1038/nn768

Ralph, M. R., & Skene, D. J. (2005). Nonphotic entrainment in humans? Journal of Biological Rhythms, 20(4), 339–352. https://doi.org/10.1177/0748730405277982

Hofman, M. A., Zhou, J. N., & Swaab, D. F. (1996). Suprachiasmatic nucleus of the human brain: An immunocytochemical and morphometric analysis. The Anatomical Record, 244(4), 552–562. https://doi.org/10.1002/(SICI)1097-0185(199604)244:4<552::AID-AR13>3.0.CO;2-0

Abrahamson, E. E., & Moore, R. Y. (2001). Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Research, 916(1–2), 172–191. https://doi.org/10.1016/s0006-8993(01)02890-6

Bedont, J. L., & Blackshaw, S. (2015). Constructing the suprachiasmatic nucleus: A watchmaker’s perspective on the central clockworks. Frontiers in Systems Neuroscience, 9, 74. https://doi.org/10.3389/fnsys.2015.00074

Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J., & Herzog, E. D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience, 8(4), 476–483. https://doi.org/10.1038/nn1419

DeWoskin, D., Myung, J., Belle, M. D., Piggins, H. D., Takumi, T., & Forger, D. B. (2015). Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proceedings of the National Academy of Sciences, 112(29), E3911–E3919. https://doi.org/10.1073/pnas.1420753112

Belle, M. D. C., Diekman, C. O., Forger, D. B., & Piggins, H. D. (2009). Daily electrical silencing in the mammalian circadian clock. Science, 326(5950), 281–284. https://doi.org/10.1126/science.1169657

Southey, B. R., Lee, J. E., Zamdborg, L., Atkins, N., Jr., Mitchell, J. W., Li, M., Gillette, M. U., Kelleher, N. L., & Sweedler, J. V. (2014). Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Analytical Chemistry, 86(1), 443–452. https://doi.org/10.1021/ac4023378

Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247(4945), 975–978. https://doi.org/10.1126/science.2305266

Bañuelos, S., Best, J., Huguet, G., Prieto-Langarica, A., Pyzza, P. B., & Wilson, S. (2020). Modeling the long term effects of thermoregulation on human sleep. Journal of Theoretical Biology, 493, 110208. https://doi.org/10.1016/j.jtbi.2020.110208

Harding, E. C., Franks, N. P., & Wisden, W. (2019). The temperature dependence of sleep. Frontiers in Neuroscience, 13, 336. https://doi.org/10.3389/fnins.2019.00336

Shanahan, T. L., Zeitzer, J. M., & Czeisler, C. A. (1997). Resetting the melatonin rhythm with light in humans. Journal of Biological Rhythms, 12(6), 556–567. https://doi.org/10.1177/074873049701200608

Hu, Y., Lv, Y., Long, X., Yang, G., & Zhou, J. (2024). Melatonin attenuates chronic sleep deprivation-induced cognitive deficits and HDAC3-Bmal1/clock interruption. CNS Neuroscience & Therapeutics, 30(3), e14474. https://doi.org/10.1111/cns.14474

Arendt, J. (2000). Physiology of the pineal gland and melatonin. In L. J. De Groot, P. Beck-Peccoz, G. Chrousos, K. Dungan, A. Grossman, J. M. Hershman, C. Koch, M. McLachlan, M. New, R. Rebar, F. Singer, A. Vinik, & M. O. Weickert (Eds.), Endotext. MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK550972/

Scheer, F. A. J. L., & Czeisler, C. A. (2005). Melatonin, sleep, and circadian rhythms. Sleep Medicine Reviews, 9(1), 5–9. https://doi.org/10.1016/j.smrv.2004.11.004

Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell, 96(2), 271–290. https://doi.org/10.1016/s0092-8674(00)80566-8

Levey, A. I., Hallanger, A. E., & Wainer, B. H. (1987). Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neuroscience Letters, 74(1), 7–13. https://doi.org/10.1016/0304-3940(87)90042-5

Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263. https://doi.org/10.1038/nature04284

Giber, K., Diana, M. A., Plattner, V. M., Dugue, G. P., Bokor, H., Rousseau, C. V., Maglóczky, Z., Havas, L., Hangya, B., Wildner, H., & Zeilhofer, H. U. (2015). A subcortical inhibitory signal for behavioral arrest in the thalamus. Nature Neuroscience, 18(4), 562–568. https://doi.org/10.1038/nn.3951

Lewis, L. D., Voigts, J., Flores, F. J., Schmitt, L. I., Wilson, M. A., Halassa, M. M., & Brown, E. N. (2015). Thalamic reticular nucleus induces fast and local modulation of arousal state. eLife, 4, e08760. https://doi.org/10.7554/eLife.08760

Mochizuki, T., Crocker, A., McCormack, S., Yanagisawa, M., Sakurai, T., & Scammell, T. E. (2004). Behavioral state instability in orexin knock-out mice. Journal of Neuroscience, 24(28), 6291–6300. https://doi.org/10.1523/JNEUROSCI.0586-04.2004

Sherin, J. E., Shiromani, P. J., McCarley, R. W., & Saper, C. B. (1996). Activation of ventrolateral preoptic neurons during sleep. Science, 271(5246), 216–219. https://doi.org/10.1126/science.271.5246.216

Lu, J., Zhang, Y. H., Chou, T. C., Gaus, S. E., Elmquist, J. K., Shiromani, P., & Saper, C. B. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. Journal of Neuroscience, 21(13), 4864–4874. https://doi.org/10.1523/JNEUROSCI.21-13-04864.2001

Jaggard, J. B., Wang, G. X., & Mourrain, P. (2021). Non-REM and REM/paradoxical sleep dynamics across phylogeny. Current Opinion in Neurobiology, 71, 44–51. https://doi.org/10.1016/j.conb.2021.08.004

Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118(3062), 273–274. https://doi.org/10.1126/science.118.3062.273

Dement, W. (1958). The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalography and Clinical Neurophysiology, 10(2), 291–296. https://doi.org/10.1016/0013-4694(58)90037-3

Tan, X., van Egmond, L., Partinen, M., Lange, T., & Benedict, C. (2019). A narrative review of interventions for improving sleep and reducing circadian disruption in medical inpatients. Sleep Medicine, 59, 42–50. https://doi.org/10.1016/j.sleep.2018.08.007

Carskadon, M. A., & Dement, W. C. (2005). Normal human sleep: An overview. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and practice of sleep medicine (4th ed., pp. 13–23). Elsevier Saunders.

Bathory, E., & Tomopoulos, S. (2017). Sleep regulation, physiology and development, sleep duration and patterns, and sleep hygiene in infants, toddlers, and preschool-age children. Current Problems in Pediatric and Adolescent Health Care, 47(2), 29–42. https://doi.org/10.1016/j.cppeds.2016.12.001

Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014). Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2), 355–362. https://doi.org/10.1016/j.neuron.2014.09.033

Porkka-Heiskanen, T., Zitting, K. M., & Wigren, H. K. (2013). Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiologica, 208(4), 311–328. https://doi.org/10.1111/apha.12134

Siegel, J. M., Nienhuis, R., & Tomaszewski, K. S. (1984). REM sleep signs rostral to chronic transections at the pontomedullary junction. Neuroscience Letters, 45(3), 241–246. https://doi.org/10.1016/0304-3940(84)90238-3

Sapin, E., Lapray, D., Berod, A., Goutagny, R., Leger, L., Ravassard, P., Clement, O., Hanriot, L., Fort, P., & Luppi, P. H. (2009). Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLOS ONE, 4(9), e4272. https://doi.org/10.1371/journal.pone.0004272

Beersma, D. G. M., Dijk, D. J., Blok, C. G. H., & Daan, S. (1990). REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalography and Clinical Neurophysiology, 76(2), 114–122. https://doi.org/10.1016/0013-4694(90)90010-7

Krueger, J. M., Clinton, J. M., Winters, B. D., Zielinski, M. R., Taishi, P., Jewett, K. A., & Davis, C. J. (2011). Involvement of cytokines in slow wave sleep. Progress in Brain Research, 193, 39–47. https://doi.org/10.1016/B978-0-444-53839-0.00003-X

Krueger, J. M. (2008). The role of cytokines in sleep regulation. Current Pharmaceutical Design, 14(32), 3408–3416. https://doi.org/10.2174/138161208786549281

Schmitt, L. I., Sims, R. E., Dale, N., & Haydon, P. G. (2012). Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. Journal of Neuroscience, 32(13), 4417–4425. https://doi.org/10.1523/JNEUROSCI.5689-11.2012

Gallopin, T., Luppi, P. H., Cauli, B., Urade, Y., Rossier, J., Hayaishi, O., Lambolez, B., & Fort, P. (2005). The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 134(4), 1377–1390. https://doi.org/10.1016/j.neuroscience.2005.05.045

Alam, M. A., Kumar, S., McGinty, D., Alam, M. N., & Szymusiak, R. (2014). Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. Journal of Neurophysiology, 111(2), 287–299. https://doi.org/10.1152/jn.00504.2013

John, J., & Kumar, V. M. (1998). Effect of NMDA lesion of the medial preoptic neurons on sleep and other functions. Sleep, 21(6), 587–598. https://doi.org/10.1093/sleep/21.6.587

Chamberlin, N. L., Arrigoni, E., Chou, T. C., Scammell, T. E., Greene, R. W., & Saper, C. B. (2003). Effects of adenosine on GABAergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience, 119(4), 913–918. https://doi.org/10.1016/s0306-4522(03)00246-1

Jouvet, M. (1962). Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Archives Italiennes de Biologie, 100, 125–206.

Saper, C. B., Lu, J., Chou, T. C., & Gooley, J. (2005). The hypothalamic integrator for circadian rhythms. Trends in Neurosciences, 28(3), 152–157. https://doi.org/10.1016/j.tins.2005.01.002

Williams, J. A., Zimmerman, F. J., & Bell, J. F. (2013). Norms and trends of sleep time among US children and adolescents. JAMA Pediatrics, 167(1), 55–60. https://doi.org/10.1001/jamapediatrics.2013.423

Reyner, L. A., Horne, J. A., & Reyner, A. (1995). Gender- and age-related differences in sleep determined by home-recorded sleep logs and actimetry from 400 adults. Sleep, 18(2), 127–134. https://doi.org/10.1093/sleep/18.2.127

Fan, Y., Wang, Y., Gu, P., Han, J., & Tian, Y. (2022). How temperature influences sleep. International Journal of Molecular Sciences, 23(20), 12191. https://doi.org/10.3390/ijms232012191

Donlea, J. M. (2018). Roles for sleep in memory: Insights from the fly. Current Opinion in Neurobiology, 54, 120–126. https://doi.org/10.1016/j.conb.2018.10.006

Oikonomou, G., & Prober, D. A. (2019). Linking immunity and sickness-induced sleep. Science, 363(6426), 455–456. https://doi.org/10.1126/science.aaw2113

Huang, S., & Sigrist, S. J. (2020). Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Current Opinion in Neurobiology, 69, 1–10. https://doi.org/10.1016/j.conb.2020.10.008

Reddy, S., Reddy, V., & Sharma, S. (2023). Physiology, circadian rhythm. In StatPearls. StatPearls Publishing. PMID: 30137792.

Irwin, M. R. (2015). Why sleep is important for health: A psychoneuroimmunology perspective. Annual Review of Psychology, 66, 143–172. https://doi.org/10.1146/annurev-psych-010213-115205

Baranwal, N., Yu, P. K., & Siegel, N. S. (2023). Sleep physiology, pathophysiology, and sleep hygiene. Progress in Cardiovascular Diseases, 77, 59–69. https://doi.org/10.1016/j.pcad.2023.02.005

Seo, J., Oliver, K. I., Daffre, C., Moore, K. N., Gazecki, S., Lasko, N. B., Milad, M. R., & Pace-Schott, E. F. (2022). Associations of sleep measures with neural activations accompanying fear conditioning and extinction learning and memory in trauma-exposed individuals. Sleep, 45(3), zsab261. https://doi.org/10.1093/sleep/zsab261

Shah, J., Poirier, B. F., Hedges, J., Jamieson, L., & Sethi, S. (2024). Effect of sleep on oral health: A scoping review. Sleep Medicine Reviews, 76, 101939. https://doi.org/10.1016/j.smrv.2024.101939

Konakanchi, S., Raavi, V., Ml, H. K., & Shankar, M. S. V. (2023). Impact of chronic sleep deprivation and sleep recovery on hippocampal oligodendrocytes, anxiety-like behavior, spatial learning and memory of rats. Brain Research Bulletin, 193, 59–71. https://doi.org/10.1016/j.brainresbull.2022.12.002

Keloglan, S.M., Sahin, L., & Cevik, O.S. (2022). Chronic caffeine consumption improves the acute sleep deprivation-induced spatial memory impairment while altering N-methyl-D-aspartate receptor subunit expression in male rats. Int J Dev Neurosci. 82(7), 596-605. https://doi.org/10.1002/jdn.10212.

Toda, H., Williams, J. A., Gulledge, M., & Sehgal, A. (2019). A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science, *363*(6426), 509–515. https://doi.org/10.1126/science.aat1650

Huang, S., & Sigrist, S. J. (2020). Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Current Opinion in Neurobiology, 69, 1–10. https://doi.org/10.1016/j.conb.2020.11.008

Poggiogalle, E., Jamshed, H., & Peterson, C. M. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017

Lok, R., Qian, J., & Chellappa, S. L. (2024). Sex differences in sleep, circadian rhythms, and metabolism: Implications for precision medicine. Sleep Medicine Reviews, 75, 101926. https://doi.org/10.1016/j.smrv.2024.101926

Gao, Z., Guan, J., Yin, S., & Liu, F. (2024). The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep Medicine, 119, 147–154. https://doi.org/10.1016/j.sleep.2024.04.031

Bañuelos, S., Best, J., Huguet, G., Prieto-Langarica, A., Pyzza, P. B., & Wilson, S. (2020). Modeling the long term effects of thermoregulation on human sleep. Journal of Theoretical Biology, 493, 110208. https://doi.org/10.1016/j.jtbi.2020.110208

Horne, J. (2009). REM sleep, energy balance and 'optimal foraging'. Neuroscience & Biobehavioral Reviews, 33(3), 466–474. https://doi.org/10.1016/j.neubiorev.2008.12.002

Chaput, J. P. (2014). Sleep patterns, diet quality and energy balance. Physiology & Behavior, 134, 86–91. https://doi.org/10.1016/j.physbeh.2013.09.006

Hibi, M., Kubota, C., Mizuno, T., Aritake, S., Mitsui, Y., Katashima, M., & Uchida, S. (2017). Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial. Scientific Reports, 7, 39640. https://doi.org/10.1038/srep39640

Frank, M. G., & Heller, H. C. (2019). The function(s) of sleep. In Handbook of experimental pharmacology (Vol. 253, pp. 3–34). Springer. https://doi.org/10.1007/164_2018_140

Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O., DonCarlos, L., ... & Adams Hillard, P. J. (2015). National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health, 1(1), 40–43. https://doi.org/10.1016/j.sleh.2014.12.010

Dinges, D. F., Pack, F., Williams, K., Gillen, K. A., Powell, J. W., Ott, G. E., Aptowicz, C., & Pack, A. I. (1997). Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep, 20(4), 267–277.

Ferrara, M., & De Gennaro, L. (2001). How much sleep do we need? Sleep Medicine Reviews, 5(2), 155–179. https://doi.org/10.1053/smrv.2000.0138

Ghandour, K., & Inokuchi, K. (2023). Memory reactivations during sleep. Neuroscience Research, 189, 60–65. https://doi.org/10.1016/j.neures.2022.12.018

Helfrich-Förster, C. (2018). Sleep in insects. Annual Review of Entomology, 63, 69–86. https://doi.org/10.1146/annurev-ento-020117-043201

Yang, G., Lai, C. S., Cichon, J., Ma, L., Li, W., & Gan, W. B. (2014). Sleep promotes branch-specific formation of dendritic spines after learning. Science, 344(6188), 1173–1178. https://doi.org/10.1126/science.1249098

Dotto, L. (1996). Sleep stages, memory and learning. CMAJ: Canadian Medical Association Journal, 154(8), 1193–1196.

Troynikov, O., Watson, C. G., & Nawaz, N. (2018). Sleep environments and sleep physiology: A review. Journal of Thermal Biology, 78, 192–203. https://doi.org/10.1016/j.jtherbio.2018.09.012

Zhang, Y. M., Wang, Y. T., Wei, R. M., Li, X. Y., Luo, B. L., Zhang, J. Y., Zhang, K. X., Fang, S. K., Liu, X. C., & Chen, G. H. (2024). Mitochondrial antioxidant elamipretide improves learning and memory impairment induced by chronic sleep deprivation in mice. Brain and Behavior, 14(5), e3508. https://doi.org/10.1002/brb3.3508

Ocalan, B., Cakir, A., Koc, C., Suyen, G. G., & Kahveci, N. (2019). Uridine treatment prevents REM sleep deprivation-induced learning and memory impairment. Neuroscience Research, 148, 42–48. https://doi.org/10.1016/j.neures.2019.01.003

Opp, M. R., Kapas, L., & Toth, L. A. (1992). Cytokine involvement in the regulation of sleep. Proceedings of the Society for Experimental Biology and Medicine, 201(1), 16–27. https://doi.org/10.3181/00379727-201-43477

Toth, L. A., Tolley, E. A., & Krueger, J. M. (1993). Sleep as a prognostic indicator during infectious disease in rabbits. Proceedings of the Society for Experimental Biology and Medicine, 203(2), 179–192. https://doi.org/10.3181/00379727-203-43590

Fang, J., Sanborn, C. K., Renegar, K. B., Majde, J. A., & Krueger, J. M. (1995). Influenza viral infections enhance sleep in mice. Proceedings of the Society for Experimental Biology and Medicine, 210(3), 242–252. https://doi.org/10.3181/00379727-210-43954

Narasimamurthy, R., Hatori, M., Nayak, S. K., Liu, F., Panda, S., & Verma, I. M. (2012). Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proceedings of the National Academy of Sciences, 109(31), 12662–12667. https://doi.org/10.1073/pnas.1209965109

Moller-Levet, C. S., Archer, S. N., Bucca, G., Laing, E. E., Slak, A., Kabiljo, R., Lo, J. C., Santhi, N., von Schantz, M., Smith, C. P., & Dijk, D. J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proceedings of the National Academy of Sciences, 110(12), E1132–E1141. https://doi.org/10.1073/pnas.1217154110

Van Leeuwen, W. M., Lehto, M., Karisola, P., Lindholm, H., Luukkonen, R., Sallinen, M., Härmä, M., Porkka-Heiskanen, T., & Alenius, H. (2009). Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLOS ONE, 4(6), e4589. https://doi.org/10.1371/journal.pone.0004589

Martinez-Gomez, D., Eisenmann, J. C., Gomez-Martinez, S., Hill, E. E., Zapatera, B., Veiga, O. L., & Marcos, A. (2011). Sleep duration and emerging cardiometabolic risk markers in adolescents. Sleep Medicine, 12(10), 997–1002. https://doi.org/10.1016/j.sleep.2011.05.007

Everson, C. A., & Toth, L. A. (2000). Systemic bacterial invasion induced by sleep deprivation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278(4), R905–R916. https://doi.org/10.1152/ajpregu.2000.278.4.R905

Fogel, S., Vien, C., Karni, A., Benali, H., Carrier, J., & Doyon, J. (2017). Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiology of Aging, 49, 154–164. https://doi.org/10.1016/j.neurobiolaging.2016.10.009

Demiral, Ş. B., Tomasi, D., Sarlls, J., Lee, H., Wiers, C. E., Zehra, A., & Volkow, N. D. (2019). Apparent diffusion coefficient changes in human brain during sleep - Does it inform on the existence of a glymphatic system? NeuroImage, 185, 263–273. https://doi.org/10.1016/j.neuroimage.2018.10.043

Bah, T. M., Goodman, J., & Iliff, J. J. (2019). Sleep as a therapeutic target in the aging brain. Neurotherapeutics, 16(3), 554–568. https://doi.org/10.1007/s13311-019-00769-6

Shokri-Kojori, E., Wang, G.-J., Wiers, C. E., Demiral, Ş. B., Guo, M., Kim, S. W., Lindgren, E., Ramirez, V., Zehra, A., Freeman, C., Miller, G., Manza, P., Srivastava, T., De Santi, S., Tomasi, D., Benveniste, H., & Volkow, N. D. (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences, 115(17), 4483–4488. https://doi.org/10.1073/pnas.1721694115

Tahmasian, M., Samea, F., Khazaie, H., Zarei, M., Kharabian Masouleh, S., Hoffstaedter, F., ... & Eickhoff, S. B. (2020). The interrelation of sleep and mental and physical health is anchored in grey-matter neuroanatomy and under genetic control. Communications Biology, 3, Article 171. https://doi.org/10.1038/s42003-020-0892-6

Süer, C., Dolu, N., Artis, A. S., Sahin, L., Yilmaz, A., & Cetin, A. (2011). The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. Neuroscience Research, 70(1), 71–77. https://doi.org/10.1016/j.neures.2011.01.009

Cirelli, C., Faraguna, U., & Tononi, G. (2006). Changes in brain gene expression after long-term sleep deprivation. Journal of Neurochemistry, 98(5), 1632–1645. https://doi.org/10.1111/j.1471-4159.2006.04058.x

Lungato, L., Marques, M. S., Pereira, V. G., Hix, S., Gazarini, M. L., Tufik, S., & Andersen, M. L. (2013). Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scandinavian Journal of Immunology, 77(3), 195–199. https://doi.org/10.1111/sji.12029

İndir

Yayınlanan

2 Aralık 2025

Lisans

Lisans