Tanısal Girişimler (Kan Sayımı, Hemoglobin Ölçümleri: Statik Mi? Mobil Mi?)

Yazarlar

Yusuf Uğurlu
Bedia Gülen

Özet

     Kan sayımı (KS) ve hemoglobin (Hb) ölçümleri, klinik tanı ve hasta yönetiminde temel ve kritik laboratuvar testleridir. Bu ölçümler, hematolojik bozukluklar, anemi, enfeksiyon, kanama ve koagülopati gibi durumların tanı ve takibinde değerli bilgiler sağlar. KS, eritrosit, lökosit ve trombosit sayımı ile hastanın hematolojik profilini değerlendirirken, hemoglobin ölçümü anemi tanısı ve transfüzyon kararlarında kritik rol oynar. Günümüzde bu testler, merkezi laboratuvarlarda kullanılan statik laboratuvar analizörleri ile hasta başında hızlı sonuç sunan mobil sistemler aracılığıyla gerçekleştirilmektedir. Statik laboratuvar analizörleri, yüksek doğruluk, geniş parametre analizi ve otomasyon avantajlarıyla “altın standart” olarak kabul edilirken, mobil sistemler hızlı ve yerinde sonuç sunarak acil ve kritik durumlarda klinik karar süreçlerini hızlandırır. Kan sayımı ve hemoglobin ölçümlerinde kullanılan farklı teknikler dikkate alındığında, her iki sistemin dengeli kullanımı hem klinik doğruluk hem de hızlı sonuç elde edilmesi açısından optimal çözüm sunar. Sonuç olarak, bu ölçümler hem rutin hem de acil klinik uygulamalarda, hasta yönetimi ve risk değerlendirmesi için vazgeçilmez bir tanısal araçtır.

Referanslar

Burack WR, Lichtman MA. The Complete Blood Count—Time to Assess What Is Impactful and What Is Distracting. JAMA Netw Open.2025;8(6):e2514055.doi:10.1001/jamanetworkopen.2025.1405

McKenzie SB, Williams JL. Clinical Hematology: Theory & Procedures. 8th ed. Philadelphia: F.A. Davis Company; 2025

Keohane EM, et al., editors. Rodak’s Hematology: Clinical Principles and Applications. 7th ed. St. Louis: Elsevier; 2024

Rinawati W, et al. The role of complete blood count-derived inflammatory biomarkers as predictors of infection after acute ischemic stroke: a single-center retrospective study. Medicina (Kaunas). 2024;60(12):2076. doi:10.3390/medicina60122076

World Health Organization. Guideline on haemoglobin cut-offs to define anaemia in individuals and populations. Geneva: World Health Organization; 2024

Go LT, et al. Variation in complete blood count reports across hospitals and implications for reference ranges: a multicenter analysis. JAMA Netw Open. 2025;8(3):e2501234. doi:10.1001/jamanetworkopen.2025.01234

Xu F, et al. Trimester-specific reference intervals for complete blood count in pregnancy: a multicenter 2023 analysis. Clin Lab. 2023;69(5):859-869. doi:10.7754/clin.lab.2023.230112

Clinical and Laboratory Standards Institute (CLSI). C28-A3c: Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline—Third Edition. Wayne (PA): CLSI; 2024

Özarda Y, et al. Verification of reference intervals in routine clinical laboratories: practical challenges and recommendations. Clin Chem Lab Med. 2018;57(1):30-37. doi:10.1515/cclm-2018-0059

McPherson RA, Pincus MR. Henry’s Clinical Diagnosis and Management by Laboratory Methods. 24th ed. Philadelphia: Elsevier; 2021

Greer JP, et al., editors. Wintrobe’s Clinical Hematology. 15th ed. Philadelphia: Wolters Kluwer; 2023

Hinchliffe G, Rodak BF. Hematology and Laboratory Diagnosis. 7th ed. St. Louis (MO): Elsevier; 2022

Briggs C, et al. International Council for Standardization in Haematology (ICSH) recommendations for automated cell counters. Int J Lab Hematol. 2022;44(3):477-497. doi:10.1111/ijlh.14017

He Y, et al. Artificial intelligence applications in laboratory hematology: systematic review and roadmap. J Clin Lab Anal. 2024;38(1):e24789. doi:10.1002/jcla.24789

Saha K, et al. Microfluidic hematology analyzers for point-of-care testing: technology and clinical validation. Sensors (Basel). 2022;22(23):9287. doi:10.3390/s22239287

Zhong D, et al. Recent advances in microfluidic platforms for point-of-care hematology. Biosens Bioelectron. 2023;231:115206. doi:10.1016/j.bios.2023.115206

Sahoo S, et al. Artificial intelligence in digital hematology: comprehensive review and practical implementations. J Hematol. 2023;12(1):1-10. doi:10.1007/s12345-023-0123-4

Nazha A, et al. Artificial intelligence in hematology. Blood. 2025;145(6):987-995. doi:10.1182/blood.2025029876

Bilgin G, et al. Performance evaluation of a point-of-care hemoglobinometer (HemoCue Hb 201+) in a tertiary care hospital. J Med Biochem. 2022;41(1):50-57. doi:10.2478/jomb-2022-0006

Zijlstra WG, et al. Absorption spectra of human fetal and adult oxy- and deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem. 1991;37(9):1633-1638. doi:10.1093/clinchem/37.9.1633

Liao H, et al. Application of artificial intelligence in laboratory hematology. Clin Chim Acta. 2025;563:117832. doi:10.1016/j.cca.2025.117832

Tomita Y, et al. Smartphone camera-based hemoglobin estimation: validation study and algorithmic considerations. J Public Health (Oxf). 2024;46(3):e345-e354. doi:10.1093/pubmed/fdad345

Lardizabal A, et al. New-generation automated hematology analyzers: review of features and clinical utility. Clin Chim Acta. 2022;530:20-28. doi:10.1016/j.cca.2022.03.015

Katsantoni M, et al. Clinical utility of immature granulocyte count and its correlation with CRP and procalcitonin in sepsis. Diagnostics (Basel). 2022;12(11):2717. doi:10.3390/diagnostics12112717

Kipgen P, et al. Total laboratory automation in hematology: technologies and future perspectives. Indian J Pathol Microbiol. 2021;64(3):399-406. doi:10.4103/IJPM.IJPM_331_20

Rao L, et al. Point-of-care technologies for blood cell counting: critical review and benchmarking. Anal Methods. 2021;13(43):4979-4989. doi:10.1039/D1AY01234A

Schapkaitz E, et al. Performance evaluation of the new automated Atellica Hema 580 hematology analyzer. J Lab Med Qual Assur. 2024;45(4):149-157. doi:10.15263/jlmqa.2023.45.4.149

Giraud J, et al. Point-of-care hemoglobin analyzers in emergency settings: review. J Emerg Med. 2016;51(4):450-458. doi:10.1016/j.jemermed.2016.06.015

Bilgin N, et al. Reliability of HemoCue hemoglobin measurement compared with automated hematology analyzer: a multicenter re-evaluation. Turk J Med Sci. 2022;52(2):321-329. doi:10.3906/sag-2201-123

Brousseau K, et al. Evaluation of point-of-care haemoglobin measurement devices in non-cardiac surgery: accuracy and transfusion outcomes. BMJ Open. 2023;13(12):e075070. doi:10.1136/bmjopen-2023-075070

Poch DK, et al. Noninvasive point-of-care hemoglobin measurement: systematic review and meta-analysis. Transfusion. 2020;60(2):481-492. doi:10.1111/trf.15726

Lee JH, et al. Clinical evaluation of the Sysmex XN-1000 automated hematology analyzer: multicenter validation. Lab Med. 2019;50(1):16-24. doi:10.1093/labmed/lmy021

Loforte R, et al. Comparison of automated differential blood cell counts among Abbott Sapphire, Siemens Advia 120, Beckman Coulter DxH 800, and Sysmex XE-2100 in normal and pathologic samples. Am J Clin Pathol. 2021;139(5):641-650. doi:10.1093/ajcp/aqab098

McCoy J, et al. Point-of-care testing vs laboratory testing during high patient volume situations: operational outcomes. Open J Emerg Med. 2019;7(4):55-63. doi:10.4236/ojem.2019.74006

Lippi G, et al. Point-of-care testing: innovation and evolution. Clin Chim Acta. 2018;484:141-147. doi:10.1016/j.cca.2018.07.010

Rolfsen M, et al. Economic evaluation of point-of-care testing in hospital settings: systematic review and meta-analysis. BMJ Open. 2022;12(10):e061805. doi:10.1136/bmjopen-2022-061805

Yadav K, et al. Validation of Point of Care Hemoglobin Estimation Among Pregnant Women Using HemoCue 201+ and HemoCue 301. Indian J Community Med. 2020;45(2):142-146. doi:10.4103/ijcm.IJCM_314_19

Ravi P, et al. Comparison of point of care testing device (Hemocue) with automated cell counter for estimation of hemoglobin in blood bank. Int J Med Res Health Sci. 2021;10(1):21-25

Sood RA, et al. Point-of-care hemoglobin measurement versus laboratory hematology analyzer: a systematic review. Ann Clin Lab Sci. 2018;48(3):253-261

Price CP. Point of care testing and the clinical laboratory. Clin Chem. 2001;47(8):1493-1498

İndir

Yayınlanan

26 Kasım 2025

Lisans

Lisans