Kalıtsal Meme Kanser Sendromları

Özet

Referanslar

Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013;105:812-822.

Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017;317:2402-2416.

Loveday C, Turnbull C, Ruark E, et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet 2012; 44:475.

De Leeneer K, Van Bockstal M, De Brouwer S, et al. Evaluation of RAD51C as cancer susceptibility gene in a large breast-ovarian cancer patient population referred for genetic testing. Breast Cancer Res Treat 2012; 133:393.

Sopik V, Akbari MR, Narod SA. Genetic testing for RAD51C mutations: in the clinic and community. Clin Genet 2015; 88:303.

Baker JL, Schwab RB, Wallace AM, Madlensky L. Breast cancer in a RAD51D mutation carrier: case report and review of the literature. Clin Breast Cancer 2015; 15:e71.

Yang X, Song H, Leslie G, et al. Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D. J Natl Cancer Inst 2020; 112:1242.

Kurian AW, Hughes E, Handorf EA, et al. Breast and Ovarian Cancer Penetrance Estimates Derived From Germline Multiple-Gene Sequencing Results in Women. JCO Precis Oncol 2017; 1:1.

Lilyquist J, LaDuca H, Polley E, et al. Frequency of mutations in a large series of clinically ascertained ovarian cancer cases tested on multi-gene panels compared to reference controls. Gynecol Oncol 2017; 147:375.

Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst 2014; 106:dju091.

Ledbetter DH, Rich DC, O'Connell P, et al. Precise localization of NF1 to 17q11.2 by balanced translocation. Am J Hum Genet 1989; 44:20.

Feldkamp MM, Gutmann DH, Guha A. Neurofibromatosis type 1: piecing the puzzle together. Can J Neurol Sci 1998; 25:181.

Martin GA, Viskochil D, Bollag G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 1990; 63:843.

Weiss B, Bollag G, Shannon K. Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am J Med Genet 1999; 89:14.

Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst 2014; 106:dju091.

Malkin D. Li-fraumeni syndrome. Genes Cancer 2011; 2:475.

Schneider K, Zelley K, Nichols KE, et al. Li-Fraumeni Syndrome. 1999 Jan 19 [Updated 2019 Nov 21]. In: Pagon RA, Adam MP, Bird TD, et al, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2013. http://www.ncbi.nlm.nih.gov/books/NBK1311/ (Accessed on January 11, 2023).

Hisada M, Garber JE, Fung CY, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 1998; 90:606.

Vahteristo P, Bartkova J, Eerola H, et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 2002; 71:432.

Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391:184.

Beggs AD, Latchford AR, Vasen HF, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 2010; 59:975.

Invitae Connect Patient Insights Network. Available at: http://connect.patientcrossroads.org/?org=prompt (Accessed on August 27, 2019).

Moldovan GL, D'Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009; 43:223.

Bogliolo M, Surralles J. The Fanconi Anemia/BRCA Pathway: FANCD2 at the crossroad between repair and checkpoint responses to DNA damage. Available at: www.ncbi.nlm.nih.gov/books/NBK6087/ (Accessed on December 09, 2013).

Pilarski R, Burt R, Kohlman W, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 2013; 105:1607.

National Comprehensive Cancer Network (NCCN) guidelines. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1503 (Accessed on May 14, 2024).

Cummings S, Alfonso A, Hughes E, et al. Cancer Risk Associated With PTEN Pathogenic Variants Identified Using Multigene Hereditary Cancer Panel Testing. JCO Precis Oncol 2023; 7:e2200415.

Kaurah P, Huntsman DG. Hereditary Diffuse Gastric Cancer. 2002 Nov 4 [Updated 2018 Mar 22]. In: Pagon RA, Adam MP, Bird TD, et al (Eds). GeneReviews [Internet]. University of Washington, Seattle; 1993-2013. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1139/ (Accessed on January 11, 2023).

Fitzgerald RC, Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 2010; 47:436.

Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer 2010; 13:1.

Hansford S, Kaurah P, Li-Chang H, et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol 2015; 1:23.

Kaurah P, MacMillan A, Boyd N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA 2007; 297:2360.

Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 2007; 39:165.

Tischkowitz M, Balmaña J, Foulkes WD, et al. Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1416.

Xia B, Sheng Q, Nakanishi K, et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 2006; 22:719.

Pylkäs K, Erkko H, Nikkilä J, et al. Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families. BMC Cancer 2008; 8:146.

Näslund-Koch C, Nordestgaard BG, Bojesen SE. Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J Clin Oncol 2016; 34:1208.

Cybulski C, Górski B, Huzarski T, et al. CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 2004; 75:1131.

Zeng C, Bastarache LA, Tao R, et al. Association of Pathogenic Variants in Hereditary Cancer Genes With Multiple Diseases. JAMA Oncol 2022; 8:835.

Hanson H, Astiazaran-Symonds E, Amendola LM, et al. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870.

Cybulski C, Huzarski T, Byrski T, et al. Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet 2009; 75:72.

van Os NJ, Roeleveld N, Weemaes CM, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet 2016; 90:105.

Breast Cancer Association Consortium, Dorling L, Carvalho S, et al. Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women. N Engl J Med 2021; 384:428.

Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive Cancer Associations in Patients With Neurofibromatosis Type 1. J Clin Oncol 2016; 34:1978.

Sharif S, Moran A, Huson SM, et al. Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet 2007; 44:481.

Breast Cancer Screening and Diagnosis. Available at: https://www.nccn.org/professionals/physician_gls/pdf/breast-screening.pdf (Accessed on April 26, 2022).

Sayfalar

339-344

Yayınlanan

15 Ocak 2026

Lisans

Lisans