VSL#3 Probiotic and Its Potential Role in Neurodegenerative Diseases Microbiological Perspective
Özet
Alzheimer hastalığı (AD), Parkinson hastalığı (PD) ve Amiyotrofik Lateral Skleroz (ALS) gibi nörodejeneratif hastalıklar, küresel yaşlanmanın etkisiyle hızla büyüyen bir halk sağlığı sorunu oluşturmaktadır. Son yıllarda yapılan çalışmalar, bu hastalıkların patogenezinde mikrobiyota–bağırsak–beyin ekseninin kritik rolünü ortaya koymuştur. Mikrobiyal disbiyozisin; nöroinflamasyon, oksidatif stres ve bozulmuş nöronal sinyalizasyon ile ilişkili olduğu gösterilmektedir. Yüksek potentli, çok suşlu bir probiyotik preparat olan VSL#3, bu ekseni modüle etme potansiyeli ile öne çıkmaktadır. Tek suşlu probiyotiklerden farklı olarak VSL#3, çeşitlilik gösteren fonksiyonlara sahip sinerjistik bir mikrobiyal konsorsiyum sunar; bağırsak bariyerini güçlendirme, nöroaktif metabolit üretimi ve sistemik immün yanıtın düzenlenmesi bu işlevler arasında yer almaktadır. Deneysel ve erken klinik veriler, gastrointestinal sistemin ötesinde etkilerinin bulunabileceğini; sitokin sinyalizasyonunun modülasyonu, mikrobiyal dengenin yeniden sağlanması, kan–beyin bariyerinin güçlendirilmesi ve oksidatif stresin azaltılması yoluyla nörodejeneratif süreçleri etkileyebileceğini göstermektedir. Ayrıca, VSL#3 tarafından üretilen kısa zincirli yağ asitleri, poliaminler ve triptofan türevleri gibi metabolitler, nöroproteksiyon ve sinaptik dayanıklılığa katkıda bulunmaktadır. Bununla birlikte, mevcut klinik kanıtlar; küçük hasta grupları, heterojen çalışma tasarımları ve kısa takip süreleri ile sınırlıdır. Gelecekte nedenselliği ve terapötik etkinliği netleştirmek için formülasyon standardizasyonu, multi-omik yaklaşımların entegrasyonu ve uzun dönem randomize kontrollü çalışmalara ihtiyaç vardır. Bu bölümde VSL#3’ün nörodejeneratif hastalıklar bağlamındaki mikrobiyolojik temelleri, mekanistik etkileri ve klinik yansımaları ele alınmakta; ayrıca mevcut zorluklar ve geleceğe yönelik araştırma gereksinimleri tartışılmaktadır.
Referanslar
Food and Agricultural Organization of the United Nations and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World Health Organization [online], (2001).
Douillard, F. P., Mora, D., Eijlander, R. T., Wels, M., & de Vos, W. M. (2018). Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PloS one, 13(2), e0192452. https://doi.org/10.1371/journal.pone.0192452
Lee, S. (2025, June 13). Epidemiology of neurodegenerative diseases. Number Analytics. Retrieved from https://www.numberanalytics.com/blog/epidemiology-neurodegenerative-diseases-guide
Docter-Loeb, H. (2025, March 17). Parkinson’s disease numbers set to rise dramatically in coming decades. The Washington Post. https://www.washingtonpost.com/health/2025/03/17/parkinsons-disease-diagnosis-increase-aging
Chapman, T. M., Plosker, G. L., & Figgitt, D. P. (2006). VSL#3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases. Drugs, 66(10), 1371–1387. https://doi.org/10.2165/00003495-200666100-00006
Sherwin, E., Sandhu, K. V., Dinan, T. G., & Cryan, J. F. (2016). May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS drugs, 30(11), 1019–1041. https://doi.org/10.1007/s40263-016-0370-3
Paul, A. D., & Natarajan, H. (2025). From gut to brain: exploring the impact of microbiota, dysbiosis, and neuroinflammation in neurodegenerative disorders. Future Journal of Pharmaceutical Sciences, 11, 105. https://doi.org/10.1186/s43094-025-00105-0
Bonaz, B., Bazin, T., & Pellissier, S. (2018). The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in neuroscience, 12, 49. https://doi.org/10.3389/fnins.2018.00049
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
Moloney, R. D., Desbonnet, L., Clarke, G., Dinan, T. G., & Cryan, J. F. (2014). The microbiome: stress, health and disease. Mammalian genome: official journal of the International Mammalian Genome Society, 25(1-2), 49–74. https://doi.org/10.1007/s00335-013-9488-5
Bayazid, A. B., Jang, Y. A., Kim, Y. M., Kim, J. G., & Lim, B. O. (2021). Neuroprotective Effects of Sodium Butyrate through Suppressing Neuroinflammation and Modulating Antioxidant Enzymes. Neurochemical Research, 46(9), 2348–2358. https://doi.org/10.1007/s11064-021-03369-z
Unger, M. M., Spiegel, J., Dillmann, K. U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., & Schäfer, K. H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism & related disorders, 32, 66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019
Schwarcz, R., & Stone, T. W. (2017). The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology, 112(Pt B), 237–247. https://doi.org/10.1016/j.neuropharm.2016.08.003
Madeo, F., Eisenberg, T., Pietrocola, F., & Kroemer, G. (2018). Spermidine in health and disease. Science (New York, N.Y.), 359(6374), eaan2788. https://doi.org/10.1126/science.aan2788
Hays, K. E., Pfaffinger, J. M., & Ryznar, R. (2024). The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut microbes, 16(1), 2393270. https://doi.org/10.1080/19490976.2024.2393270
Vogt, N. M., Kerby, R. L., Dill-McFarland, K. A., Harding, S. J., Merluzzi, A. P., Johnson, S. C., Carlsson, C. M., Asthana, S., Zetterberg, H., Blennow, K., Bendlin, B. B., & Rey, F. E. (2017). Gut microbiome alterations in Alzheimer's disease. Scientific reports, 7(1), 13537. https://doi.org/10.1038/s41598-017-13601-y
Scheperjans, F., Aho, V., Pereira, P. A., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K., & Auvinen, P. (2015). Gut microbiota are related to Parkinson's disease and clinical phenotype. Movement disorders : official journal of the Movement Disorder Society, 30(3), 350–358. https://doi.org/10.1002/mds.26069
Blacher, E., Bashiardes, S., Shapiro, H., Rothschild, D., Mor, U., Dori-Bachash, M., Kleimeyer, C., Moresi, C., Harnik, Y., Zur, M., Zabari, M., Brik, R. B., Kviatcovsky, D., Zmora, N., Cohen, Y., Bar, N., Levi, I., Amar, N., Mehlman, T., Brandis, A., … Elinav, E. (2019). Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 572(7770), 474–480. https://doi.org/10.1038/s41586-019-1443-5
Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., & Margolles, A. (2017). Bifidobacteria and Their Health-Promoting Effects. Microbiology spectrum, 5(3), 10.1128/microbiolspec.bad-0010-2016. https://doi.org/10.1128/microbiolspec.BAD-0010-2016
Kobayashi, Y., Kinoshita, T., Matsumoto, A., Yoshino, K., Saito, I., & Xiao, J. Z. (2019). Bifidobacterium Breve A1 Supplementation Improved Cognitive Decline in Older Adults with Mild Cognitive Impairment: An Open-Label, Single-Arm Study. The journal of prevention of Alzheimer's disease, 6(1), 70–75. https://doi.org/10.14283/jpad.2018.32
Savignac, H. M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2014). Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterology and motility, 26(11), 1615–1627. https://doi.org/10.1111/nmo.12427
Binda, S., Tremblay, A., Iqbal, U. H., Kassem, O., Le Barz, M., Thomas, V., Bronner, S., Perrot, T., Ismail, N., & Parker, J. A. (2024). Psychobiotics and the Microbiota-Gut-Brain Axis: Where Do We Go from Here?. Microorganisms, 12(4), 634. https://doi.org/10.3390/microorganisms12040634
Groeger, D., O'Mahony, L., Murphy, E. F., Bourke, J. F., Dinan, T. G., Kiely, B., Shanahan, F., & Quigley, E. M. (2013). Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut microbes, 4(4), 325–339. https://doi.org/10.4161/gmic.25487
Desbonnet, L., Garrett, L., Clarke, G., Kiely, B., Cryan, J. F., & Dinan, T. G. (2010). Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience, 170(4), 1179–1188. https://doi.org/10.1016/j.neuroscience.2010.08.005
Lin, S. W., Tsai, Y. S., Chen, Y. L., Wang, M. F., Chen, C. C., Lin, W. H., & Fang, T. J. (2021). Lactobacillus plantarum GKM3 Promotes Longevity, Memory Retention, and Reduces Brain Oxidation Stress in SAMP8 Mice. Nutrients, 13(8), 2860. https://doi.org/10.3390/nu13082860
Lee, Y. Z., Cheng, S. H., Chang, M. Y., Lin, Y. F., Wu, C. C., & Tsai, Y. C. (2023). Neuroprotective Effects of Lactobacillus plantarum PS128 in a Mouse Model of Parkinson's Disease: The Role of Gut Microbiota and MicroRNAs. International journal of molecular sciences, 24(7), 6794. https://doi.org/10.3390/ijms24076794
Benyacoub, J., Bosco, N., Blanchard, C., Demont, A., Philippe, D., Castiel-Higounenc, I., & Guéniche, A. (2014). Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defences. Beneficial microbes, 5(2), 129–136. https://doi.org/10.3920/BM2013.0014
Al-Sadi, R., Nighot, P., Nighot, M., Haque, M., Rawat, M., & Ma, T. Y. (2021). Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2-Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. The American journal of pathology, 191(5), 872–884. https://doi.org/10.1016/j.ajpath.2021.02.003
Ağagündüz, D., Yılmaz, B., Şahin, T. Ö., Güneşliol, B. E., Ayten, Ş., Russo, P., Spano, G., Rocha, J. M., Bartkiene, E., & Özogul, F. (2021). Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods (Basel, Switzerland), 10(12), 3099. https://doi.org/10.3390/foods10123099
Wasilewska, E., Zlotkowska, D., & Wroblewska, B. (2019). Yogurt starter cultures of Streptococcus thermophilus and Lactobacillus bulgaricus ameliorate symptoms and modulate the immune response in a mouse model of dextran sulfate sodium-induced colitis. Journal of dairy science, 102(1), 37–53. https://doi.org/10.3168/jds.2018-14520
Rajilić-Stojanović, M., Smidt, H., & de Vos, W. M. (2007). Diversity of the human gastrointestinal tract microbiota revisited. Environmental microbiology, 9(9), 2125–2136. https://doi.org/10.1111/j.1462-2920.2007.01369.x
Onyango, I. G., Jauregui, G. V., Čarná, M., Bennett, J. P., Jr, & Stokin, G. B. (2021). Neuroinflammation in Alzheimer's Disease. Biomedicines, 9(5), 524. https://doi.org/10.3390/biomedicines9050524
Wang, H., Li, S., Li, H., DU, F., Guan, J., & Wu, Y. (2019). Mechanism of Probiotic VSL#3 Inhibiting NF-κB and TNF-α on Colitis through TLR4-NF-κB Signal Pathway. Iranian journal of public health, 48(7), 1292–1300.
Wang, T., Dai, M. Z., Liu, F. S., Cao, B. B., Guo, J., Shen, J. Q., & Li, C. Q. (2020). Probiotics Modulate Intestinal Motility and Inflammation in Zebrafish Models. Zebrafish, 17(6), 382–393. https://doi.org/10.1089/zeb.2020.1877.
Rothhammer, V., & Quintana, F. J. (2019). The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nature reviews. Immunology, 19(3), 184–197. https://doi.org/10.1038/s41577-019-0125-8.
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature reviews. Gastroenterology & hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3.
Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nature neuroscience, 10(9), 1089–1093. https://doi.org/10.1038/nn1971.
Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F., & Stanton, C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of applied microbiology, 113(2), 411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.x.
Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 112(Pt B), 399–412. https://doi.org/10.1016/j.neuropharm.2016.07.002.
Matsumoto, M., & Benno, Y. (2007). The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiology and immunology, 51(1), 25–35. https://doi.org/10.1111/j.1348-0421.2007.tb03887.x.
Lin, M. Y., & Chang, F. J. (2000). Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive diseases and sciences, 45(8), 1617–1622. https://doi.org/10.1023/a:1005577330695
Liu, H., Johnston, L. J., Wang, F., & Ma, X. (2021). Triggers for the Nrf2/ARE Signaling Pathway and Its Nutritional Regulation: Potential Therapeutic Applications of Ulcerative Colitis. International journal of molecular sciences, 22(21), 11411. https://doi.org/10.3390/ijms222111411.
[44]: Sienes Bailo, P., Llorente Martín, E., Calmarza, P., Montolio Breva, S., Bravo Gómez, A., Pozo Giráldez, A., Sánchez-Pascuala Callau, J. J., Vaquer Santamaría, J. M., Dayaldasani Khialani, A., Cerdá Micó, C., Camps Andreu, J., Sáez Tormo, G., & Fort Gallifa, I. (2022). The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in laboratory medicine, 3(4), 342–360. https://doi.org/10.1515/almed-2022-0111.
Ouwehand, A., & Vesterlund, S. (2003). Health aspects of probiotics. IDrugs : the investigational drugs journal, 6(6), 573–580.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews. Gastroenterology & hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66.