The Role And Importance Of Solid Dispersions In Improving The Bioavailability Profile Of Drugs

Yazarlar

Esra Pezik
Elif Ebrar Hisli

Özet

Zayıf sulu çözünürlük, birçok aktif farmasötik bileşenin (API) biyoyararlanımı ve terapötik etkinliği önünde önemli bir engel olmaya devam etmektedir. Katı dispersiyon (SD) teknolojisi, kristalin API'leri amorf formlara dönüştürerek çözünme hızlarını ve sistemik emilimi artırarak bu sınırlamanın üstesinden gelmek için umut verici bir formülasyon stratejisi olarak ortaya çıkmıştır. SD'ler, formülasyon karmaşıklığına göre basit ötektik karışımlardan kontrollü salım sağlayan gelişmiş polimer-yüzey aktif madde sistemlerine kadar uzanan dört jenerasyona ayrılır. Eritme, çözücü buharlaştırma, püskürtmeli kurutma, dondurarak kurutma, sıcakta eriyen ekstrüzyon, süperkritik akışkan işleme ve Kinetisol® gibi hazırlama yöntemleri, nihai ürünün fizikokimyasal kararlılığını ve performansını belirlemede kritik bir rol oynar. Her teknik, API ve yardımcı maddelerin termal ve kimyasal özelliklerine bağlı olarak farklı avantajlar sunar. Çözünürlük ve farmakokinetik profillerde gösterilen iyileştirmelere rağmen, özellikle amorf formların yeniden kristalleştirilmesiyle ilgili ölçeklenebilirlik ve kararlılık zorlukları nedeniyle SD'lerin ticari uygulaması sınırlı kalmaktadır. Özellikle Kinetisol® gibi çözücüsüz ve yüksek enerjili teknolojiler olmak üzere son dönemdeki gelişmeler, bu sorunların çözümünde önemli bir potansiyel sunmaktadır. Genel olarak, SD teknolojisi, suda az çözünen ilaçların oral biyoyararlanımını iyileştirmek ve hasta uyumunu artırmak için etkili bir yaklaşım olarak kabul edilmekte ve dozaj formlarının geliştirilmesinde giderek daha fazla önem kazanmaktadır.

Referanslar

Olivares-Morales, A., Hatley, O. J., Turner, D., Galetin, A., Aarons, L., & Rostami-Hodjegan, A. (2014). The use of ROC analysis for the qualitative prediction of human oral bioavailability from animal data. Pharmaceutical research, 31(3), 720-730.

Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 10(1), 208–212 (2008).

Stielow, M., Witczyńska, A., Kubryń, N., Fijałkowski, Ł., Nowaczyk, J., & Nowaczyk, A. (2023). The bioavailability of drugs—the current state of knowledge. Molecules, 28(24), 8038.

Amaliah, S., Aulifa, D. L., Gazzali, A. M., & Budiman, A. (2025). Ternary Solid Dispersions as an Alternative Approach to Enhance Pharmacological Activity. Drug Design, Development and Therapy, 19, 5663–5684.

Bhalani, D. V., Nutan, B., Kumar, A., & Singh Chandel, A. K. (2022). Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 10(9), 2055.

Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research, 12(3), 413-420.

Dahan, A., Miller, J. M., & Amidon, G. L. (2009). Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. The AAPS journal, 11(4), 740-746.

Losada-Barreiro, S., Celik, S., Sezgin-Bayindir, Z., Bravo-Fernández, S., & Bravo-Díaz, C. (2024). Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes. Pharmaceutics, 16(7), 852.

Zhuo, Y., Zhao, Y. G., & Zhang, Y. (2024). Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. Molecules, 29(20), 4854.

Kumar,A.; Sahoo, S.K.; Padhee, K.; Kochar, P.S.; Sathapathy, A.; Pathak, N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm. Glob. 2011, 3, 1–7.

Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., ... & Lee, J. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian journal of pharmaceutical sciences, 9(6), 304-316.

Pezik, E., Gulsun, T., Gündüz, M. G., Sahin, S., Öztürk, N., & Vural, I. (2023). Preparation of nanosuspensions of a 1, 4-dihydropyridine-based mixed L-/T-type calcium channel blocker by combined precipitation and ultrasonication methods. Journal of Drug Delivery Science and Technology, 87, 104772.

Kumar, S., & Singh, P. (2016). Various techniques for solubility enhancement: An overview. The Pharma Innovation, 5(1, Part A), 23.

Sareen, S., Mathew, G., & Joseph, L. (2012). Improvement in solubility of poor water-soluble drugs by solid dispersion. International journal of pharmaceutical investigation, 2(1), 12.

Vemula, V. R., Lagishetty, V., & Lingala, S. (2010). Solubility enhancement techniques. International journal of pharmaceutical sciences review and research, 5(1), 41-51

Vioglio, P. C., Chierotti, M. R., & Gobetto, R. (2017). Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Advanced drug delivery reviews, 117, 86-110.

Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: importance and enhancement techniques. International Scholarly Research Notices, 2012(1), 195727.

Vo, C. L. N., Park, C., & Lee, B. J. (2013). Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 799-813.

Chaudhari, S. P., & Dugar, R. P. (2017). Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. Journal of drug delivery science and technology, 41, 68-77.

Almotairy, A., Almutairi, M., Althobaiti, A., Alyahya, M., Sarabu, S., Alzahrani, A., ... & Repka, M. A. (2021). Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. Journal of Drug Delivery Science and Technology, 65, 102674.

Tran, P., Pyo, Y. C., Kim, D. H., Lee, S. E., Kim, J. K., & Park, J. S. (2019). Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 11(3), 132.

Nikghalb, L. A., Singh, G., Singh, G., & Kahkeshan, K. F. (2012). Solid dispersion: methods and polymers to increase the solubility of poorly soluble drugs. Journal of Applied Pharmaceutical Science, 2(10), 170-175.

Nazli, H., Mesut, B., & Ozsoy, Y. (2021). Pharmaceutical Approaches for Low Solubility Agents and Solubility of Aprepitant. Fabad Journal of Pharmaceutical Sciences, 46(3), 325-344

Cid, A. G., Simonazzi, A., Palma, S. D., & Bermúdez, J. M. (2019). Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Therapeutic delivery, 10(6), 363-382.

Baghel, S., Cathcart, H., & O'Reilly, N. J. (2016). Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. Journal of pharmaceutical sciences, 105(9), 2527-2544.

Levy, G. (1963). Effect of particle size on dissolution and gastrointestinal absorption rates of pharmaceuticals. American journal of pharmacy and the sciences supporting public health, 135, 78-92.

Goldberg, A. H., Gibaldi, M., & Kanig, J. L. (1965). Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I: Theoretical considerations and discussion of the literature. Journal of pharmaceutical sciences, 54(8), 1145-1148.

Goldberg, A. H., Gibaldi, M., & Kanig, J. L. (1966). Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II: experimental evaluation of a eutectic mixture: urea‐acetaminophen system. Journal of pharmaceutical sciences, 55(5), 482-487.

Goldberg, A. H., Gibaldi, M., Kanig, J. L., & Mayersohn, M. (1966). Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol—urea system. Journal of pharmaceutical sciences, 55(6), 581-583.

Goldberg, A. H., Gibaldi, M., & Kanig, J. L. (1966). Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III: Experimental evaluation of griseofulvin—succinic acid solid solution. Journal of pharmaceutical sciences, 55(5), 487-492.

Mohammadi, G., Hemati, V., Nikbakht, M. R., Mirzaee, S., Fattahi, A., Ghanbari, K., & Adibkia, K. (2014). In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. Powder Technology, 257, 168-174.

Hallouard, F., Mehenni, L., Lahiani-Skiba, M., Anouar, Y., & Skiba, M. (2016). Solid dispersions for oral administration: An overview of the methods for their preparation. Current pharmaceutical design, 22(32), 4942-4958.

Oliveira, V. da S., Almeida, A. S. de, Albuquerque, I. da S., Duarte, F. Í. C., Queiroz, B. C. S. H., Converti, A., & Lima, Á. A. N. de. (2020). Therapeutic applications of solid dispersions for drugs and new molecules: In vitro and in vivo activities. Pharmaceutics, 12(10), 933.

Vo, C. L. N., Park, C., & Lee, B. J. (2013). Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European journal of pharmaceutics and biopharmaceutics, 85(3), 799-813.

Li, X., Zhang, L., Ma, D., Tang, X., Zhang, Y., Yin, T., et al. (2021). Third generation solid dispersion through lyophilization enhanced oral bioavailability of resveratrol. ACS Pharmacology & Translational Science.

Mishra, D. K., Dhote, V., Bhargava, A., Jain, D. K., & Mishra, P. K. (2015). Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications. Drug delivery and translational research, 5(6), 552-565.

Patel, D. (2020). Fourth-generation solid dispersions: An approach for controlled drug release. Pharmaceutical Development and Technology, 25(9), 1075–1084.

Sharma, R. (2021). Solid dispersion: Past evolution, current status, and future trends. Drug Delivery and Translational Research, 11, 2592–2605.

Ivanisevic, I. (2010). Physical stability studies of miscible amorphous solid dispersions. Journal of pharmaceutical sciences, 99(9), 4005-4012.

Vaka, S. R. K., Bommana, M. M., Desai, D., Djordjevic, J., Phuapradit, W., & Shah, N. (2014). Excipients for amorphous solid dispersions. In Amorphous solid dispersions: Theory and practice (pp. 123-161). New York, NY: Springer New York.

Ford, J. L. (1986). The current status of solid dispersions. Pharmaceutica Acta Helvetiae, 61(3), 69.

Aldeniz E. E. Development and In-Vitro Evaluation of Solid Dispersions to Improve theSolubility of Biopharmaceutical Classification System Class-II and Class-IVDrug Substances (Master’s thesis). Istanbul: Marmara University; 2019.

Bley, H., Fussnegger, B., & Bodmeier, R. (2010). Characterization and stability of solid dispersions based on PEG/polymer blends. International Journal of Pharmaceutics, 390(2), 165-173.

Zi, P., Zhang, C., Ju, C., Su, Z., Bao, Y., Gao, J., ... & Zhang, C. (2019). Solubility and bioavailability enhancement study of lopinavir solid dispersion matrixed with a polymeric surfactant-Soluplus. European Journal of Pharmaceutical Sciences, 134, 233-245.

Shamma, R. N., & Basha, M. (2013). Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder technology, 237, 406-414.

Sui, X., Chu, Y., Zhang, J., Zhang, H., Wang, H., Liu, T., & Han, C. (2020). The effect of PVP molecular weight on dissolution behavior and physicochemical characterization of glycyrrhetinic acid solid dispersions. Advances in Polymer Technology, 2020(1), 8859658.

Lehmkemper, K., Kyeremateng, S. O., Heinzerling, O., Degenhardt, M., & Sadowski, G. (2017). Long-term physical stability of PVP-and PVPVA-amorphous solid dispersions. Molecular pharmaceutics, 14(1), 157-171.

Vasconcelos, T., Prezotti, F., Araújo, F., Lopes, C., Loureiro, A., Marques, S., & Sarmento, B. (2021). Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. International Journal of Pharmaceutics, 595, 120245

Duarte, Í., Corvo, M. L., Serôdio, P., Vicente, J., Pinto, J. F., & Temtem, M. (2016). Production of nano-solid dispersions using a novel solvent-controlled precipitation process—Benchmarking their in vivo performance with an amorphous micro-sized solid dispersion produced by spray drying. European Journal of Pharmaceutical Sciences, 93, 203-214.

Chauhan, H., Hui-Gu, C., & Atef, E. (2013). Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. Journal of pharmaceutical sciences, 102(6), 1924-1935.

Teja, S. B., Patil, S. P., Shete, G., Patel, S., & Bansal, A. K. (2016). Drug-excipient behavior in polymeric amorphous solid dispersions. International Journal of Pharmaceutical Excipients, 4(3).

Zhang, X., Xing, H., Zhao, Y., & Ma, Z. (2018). Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 10(3), 74.

Liu, C., Desai, K. G. H., Liu, C., & Park, H. J. (2004). Enhancement of dissolution rate of rofecoxib using solid dispersions with urea. Drug development research, 63(4), 181-189.

Hussain, T., Waters, L. J., Parkes, G. M., & Shahzad, Y. (2017). Microwave processed solid dispersions for enhanced dissolution of gemfibrozil using non-ordered mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 428-435.

Yuvaraja, K., Das, S. K., & Khanam, J. (2015). Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid. Korean journal of chemical engineering, 32(1), 132-140.

Huang, S., & Williams III, R. O. (2018). Effects of the preparation process on the properties of amorphous solid dispersions. Aaps Pharmscitech, 19(5), 1971-1984.

Sekiguchi K, Obi N (1961) Studies on Absorption of Eutectic Mixture. I. A Comparison of the Behavior of Eutectic Mixture of Sulfathiazole and That of Ordinary Sulfathiazole in Man. Chemical & Pharmaceutical Bulletin.1961; 9(11):866–872

Tachibana, T., & Nakamura, A. (1965). A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of β-carotene by polyvinylpyrrolidone. Kolloid-Zeitschrift und Zeitschrift für Polymere, 203(2), 130-133.

Valkama, E., Haluska, O., Lehto, V. P., Korhonen, O., & Pajula, K. (2021). Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. International Journal of Pharmaceutics, 606, 120902.

Agrawal, A. M., Dudhedia, M. S., & Zimny, E. (2016). Hot melt extrusion: development of an amorphous solid dispersion for an insoluble drug from mini-scale to clinical scale. Aaps Pharmscitech, 17(1), 133-147.

Won, D. H., Kim, M. S., Lee, S., Park, J. S., & Hwang, S. J. (2005). Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. International journal of pharmaceutics, 301(1-2), 199-208.

Bobe, K. R., Subrahmanya, C. R., Suresh, S., Gaikwad, D. T., Patil, M. D., Khade, T. S., ... & Gaikwad, U. T. (2011). Formulation and evaluation of solid dispersion of atorvastatin with various carriers. Int J compr pharm, 1, 1-6.

Démuth, B., Farkas, A., Pataki, H., Balogh, A., Szabó, B., Borbás, E., ... & Nagy, Z. K. (2016). Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning. International journal of pharmaceutics, 498(1-2), 234-244.

Jejurkar, L., & Tapar, K. K. (2011). Preparation and characterization of mesalamine solid dispersions by kneading method. International Journal of Pharmaceutical Sciences and Research, 2(10), 2623.

Gorajana, A., W Kit, W., & Dua, K. (2015). Characterization and solubility study of norfloxacin-polyethylene glycol, polyvinylpyrrolidone and carbopol 974p solid dispersions. Recent Patents on Drug Delivery & Formulation, 9(2), 167-182.

Abdulqader, A. A., & Al-Khedairy, E. B. (2017). Formulation and evaluation of fast dissolving tablets of taste-masked ondansetron hydrochloride by solid dispersion. Iraqi Journal of Pharmaceutical Sciences, 26(1), 50-60.

Akiladevi, D., Shanmugapandiyan, P., Jebasingh, D., & Basak, S. (2011). Preparation and evaluation of paracetamol by solid dispersion technique. Int J Pharm Pharm Sci, 3(1), 188-191.

Khatri, P., Shah, M. K., Patel, N., Jain, S., Vora, N., & Lin, S. (2018). Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. Journal of Drug Delivery Science and Technology, 45, 110-123.

LaFountaine, J. S., Jermain, S. V., Prasad, L. K., Brough, C., Miller, D. A., Lubda, D., ... & Williams III, R. O. (2016). Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® dispersing. European Journal of Pharmaceutics and Biopharmaceutics, 101, 72-81.

Xiong, X., Zhang, M., Hou, Q., Tang, P., Suo, Z., Zhu, Y., & Li, H. (2019). Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Materials Science and Engineering: C, 105, 110012.

İndir

Yayınlanan

27 Kasım 2025

Lisans

Lisans