Nörodejeneratif Hastalıklarda Metallotiyoneinlerin Rolü ve Terapötik Potansiyeli
Özet
Metallotiyoneinler, nörodejeneratif hastalıkların patofizyolojik mekanizmalarında yer alan metal homeostazı, oksidatif stres ve nöroinflamasyon süreçlerinin düzenlenmesinde kritik öneme sahiptir. Alzheimer hastalığı, Parkinson hastalığı ve Amyotrofik Lateral Skleroz (ALS) gibi bozukluklarda metal iyon dengesinin bozulması; reaktif oksijen türlerinin artışı, protein agregasyonu ve mitokondriyal disfonksiyonla ilişkili nöronal hasarı tetiklemektedir. Metallotiyoneinler metal iyonlarını bağlama, redoks homeostazını koruma, oksidatif stres kaynaklı hasarı azaltma ve inflamatuvar yanıtı düzenleme özellikleriyle nöroprotektif etkiler göstermektedir. Ayrıca sinaptik bütünlüğün ve mitokondriyal fonksiyonların korunmasında önemli rol oynamaktadır. Güncel araştırmalar, metallotiyoneinlerin hem moleküler düzeyde düzenleyici işlevleri hem de potansiyel terapötik hedef olarak değerlendirilmesi gerektiğini göstermektedir. Bu kapsamda metallotiyonein temelli stratejilerin nörodejeneratif hastalıklarda hastalık ilerleyişini yavaşlatma ve hücresel düzeyde nöronal koruma sağlamada umut vadettiği düşünülmektedir.
Referanslar
Kovacs GG. Current Concept of Neurodegenerative Diseases. Eur Med J 1: 10–11, 2014.
H. Peden A, W. Ironside J. Molecular Pathology in Neurodegenerative Diseases. Curr Drug Targets 13: 1548–1559, 2012. doi: 10.2174/138945012803530134.
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 25: 816–824, 2019. doi: 10.1111/CNS.13116.
Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 9: a028035, 2017. doi: 10.1101/CSHPERSPECT.A028035.
Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidatives stress. Nat Rev Drug Discov 3: 205–214, 2004. doi: 10.1038/NRD1330;KWRD.
Voet S, Srinivasan S, Lamkanfi M, Loo G van. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11: 10248, 2019. doi: 10.15252/EMMM.201810248.
Krȩżel A, Maret W. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem Rev 121: 14594–14648, 2021. doi: 10.1021/ACS.CHEMREV.1C00371.
Margoshes M, Valiee BL. A CADMIUM PROTEIN FROM EQUINE KIDNEY CORTEX. J Am Chem Soc 79: 4813–4814, 2002. doi: 10.1021/JA01574A064.
Dhundasi SA. Metal Toxicity: A Least Explored Environmental Problem. Al Ameen J Med Sci , 2009.
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins: Structure and Functions. Adv Anat Embryol Cell Biol 218: 3–20, 2016. doi: 10.1007/978-3-319-27472-0_2.
Leal MFC, Catarino RIL, Pimenta AM, Souto MRS. The influence of the biometals Cu, Fe, and Zn and the toxic metals Cd and Pb on human health and disease . Trace Elem Electrolytes 40: 1–22, 2023. doi: 10.5414/TE500038.
Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: The multipurpose protein. Cell Mol Life Sci 59: 627–647, 2002. doi: 10.1007/S00018-002-8454-2/METRICS.
Vašák M. Advances in metallothionein structure and functions. J Trace Elem Med Biol 19: 13–17, 2005. doi: 10.1016/J.JTEMB.2005.03.003.
Vašák M, Hasler DW. Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4: 177–183, 2000. doi: 10.1016/S1367-5931(00)00082-X.
Zangger K, Öz G, Haslinger E, Kunert O, Armitage IM. Nitric oxide selectively releases metals from the N-terminal domain of metallothioneins: potential role at inflammatory sites. FASEB J 15: 1303–1305, 2001. doi: 10.1096/FJ.00-0641FJE.
Dzie P. Expression of Metallothioneins in Tumor Cells. Pol J Pathol 55: 3–12, 2004.
Petering DH, Zhu J, Krezoski S, Meeusen J, Kiekenbush C, Krull S, Specher T, Dughish M. Apo-metallothionein emerging as a major player in the cellular activities of metallothionein. Exp Biol Med 231: 1528–1534, 2006. doi: 10.1177/153537020623100912/PDF.
Korkola NC, Stillman MJ. Structural motifs in the early metallation steps of Zn(II) and Cd(II) binding to apo-metallothionein 1a. J Inorg Biochem 251: 112429, 2024. doi: 10.1016/J.JINORGBIO.2023.112429.
Palmiter RD. The elusive function of metallothioneins. Proc Natl Acad Sci 95: 8428–8430, 1998. doi: 10.1073/PNAS.95.15.8428.
Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar KT, Senthil kumar M, Ganesh GNK, Chatterjee M. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9: 1–7, 2011. doi: 10.1186/1477-7819-9-54/FIGURES/2.
Tokuda E, Ono SI, Ishige K, Naganuma A, Ito Y, Suzuki T. Metallothionein proteins expression, copper and zinc concentrations, and lipid peroxidation level in a rodent model for amyotrophic lateral sclerosis. Toxicology 229: 33–41, 2007. doi: 10.1016/J.TOX.2006.09.011.
Bogumil R, Faller P, Binz PA, Vasak M, Charnock JM, Garner CD. Structural characterization of Cu(I) and Zn(II) sites in neuronal-growth-inhibitory factor by extended X-ray absorption fine structure (EXAFS). Eur J Biochem 255: 172–177, 1998. doi: 10.1046/J.1432-1327.1998.2550172.X.
Barnham KJ, Bush AI. Metals in Alzheimer’s and Parkinson’s Diseases. Curr Opin Chem Biol 12: 222–228, 2008. doi: 10.1016/J.CBPA.2008.02.019.
Dallinger R, Berger B, Hunziker P, Kägi JHR. Metallothionein in snail Cd and Cu metabolism [7]. Nature 388: 237–238, 1997. doi: 10.1038/40785;KWRD.
Palacios Ò, Pérez-Rafael S, Pagani A, Dallinger R, Atrian S, Capdevila M. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: The Helix pomatia system as a model. J Biol Inorg Chem 19: 923–935, 2014. doi: 10.1007/S00775-014-1127-4/FIGURES/7.
Beil A, Jurt S, Walser R, Schönhut T, Güntert P, Palacios Ò, Atrian S, Capdevila M, Dallinger R, Zerbe O. The Solution Structure and Dynamics of Cd-Metallothionein from Helix pomatia Reveal Optimization for Binding Cd over Zn. .
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 4: 739–750, 2012. doi: 10.1039/C2MT20081C.
Ogushi S, Kimura T. The Difference in Zinc Concentrations Required for Induction among Metallothionein Isoforms Can Be Explained by the Different MTF1 Affinities to MREs in Its Promoter. Int J Mol Sci 2023, Vol 24, Page 283 24: 283, 2022. doi: 10.3390/IJMS24010283.
Cheng Y, Zhao Y, Chen C, Zhang F. Metallothionein and neurodegenerative diseases. .
Ayton S, Lei P, Bush AI. Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62: 76–89, 2013. doi: 10.1016/J.FREERADBIOMED.2012.10.558.
Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res 894: 37–45, 2001. doi: 10.1016/S0006-8993(00)03196-6.
Waller R, Murphy M, Garwood CJ, Jennings L, Heath PR, Chambers A, Matthews FE, Brayne C, Ince PG, Wharton SB, Simpson JE. Metallothionein-I/II expression associates with the astrocyte DNA damage response and not Alzheimer-type pathology in the aging brain. Glia 66: 2316–2323, 2018. doi: 10.1002/GLIA.23465.
Hidalgo J, Penkowa M, Espejo C, Martínez-Cáceres EM, Carrasco J, Quintana A, Molinero A, Florit S, Giralt M, Ortega-Aznar A. Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation. Exp Biol Med 231: 1450–1458, 2006. doi: 10.1177/153537020623100902/PDF.
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson’s Disease. Antioxidants 2023, Vol 12, Page 894 12: 894, 2023. doi: 10.3390/ANTIOX12040894.
Ebadi M, Sharma SK, Ghafourifar P, Brown-Borg H, El ReFaey H. Peroxynitrite in the Pathogenesis of Parkinson’s Disease and the Neuroprotective Role of Metallothioneins. Methods Enzymol 396: 276–298, 2005. doi: 10.1016/S0076-6879(05)96024-2.
Haliza N, Najib M, Yahaya MF, Das S, Seong &, Teoh L, Fairuz Yahaya M, Lin Teoh S. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish. Int J Neurosci 133: 822–833, 2023. doi: 10.1080/00207454.2021.1990916.
Murakami S, Miyazaki I, Sogawa N, Miyoshi K, Asanuma M. Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice. Neurotox Res 26: 285–298, 2014. doi: 10.1007/S12640-014-9480-1/FIGURES/10.
Puttaparthi K, Elliott JL. Non-neuronal induction of immunoproteasome subunits in an ALS model: Possible mediation by cytokines. Exp Neurol 196: 441–451, 2005. doi: 10.1016/J.EXPNEUROL.2005.08.027.
Hozumi I, Asanuma M, Yamada M, Uchida Y. Metallothioneins and Neurodegenerative Diseases. J Heal Sci 50: 323–331, 2004. doi: 10.1248/JHS.50.323.