Hematolojik Malignansilerin Yönetiminde Olası İlaç-İlaç Etkileşimleri
Özet
Hematolojik malignansilerin tedavisinde kullanılan kemoterapötik ve destek ilaçlarının çokluğu, ilaç-ilaç etkileşimleri (İİE) açısından önemli bir risk oluşturmaktadır. İİE’ler farmakokinetik, farmakodinamik veya bilinmeyen mekanizmalarla gelişebilmekte ve kontrendike, majör, orta ve minör şiddette sınıflandırılmaktadır. Multiple miyelom, lenfoma, akut ve kronik lösemilerde kullanılan ajanların (ör. bortezomib, lenalidomid, rituksimab, imatinib) yanı sıra destek tedavileri (antibiyotik, antiviral, antifungal, büyüme faktörleri, aşılar) etkileşim riskini artırmaktadır. Özellikle CYP3A4 ve P-gp üzerinden metabolize olan ilaçlarda serum düzey değişiklikleri, kardiyotoksisite, nörotoksisite ve miyelotoksisite gibi ciddi advers etkiler gözlenebilmektedir. Ayrıca proton pompa inhibitörleri gibi sık kullanılan ajanlar, tirozin kinaz inhibitörlerinin biyoyararlanımını azaltarak tedavi başarısını olumsuz etkileyebilir. Canlı aşıların immünsüpresif tedaviler sırasında uygulanması ise enfeksiyon riskini artırmaktadır. Bu nedenle hematolojik malignansilerde tedavi planlanırken olası İİE’lerin dikkatle değerlendirilmesi, güncel veri tabanlarının kullanılması ve yakın klinik takip yapılması büyük önem taşımaktadır.
Referanslar
Zarrabi S, Hosseini E, Sadeghi K, et al. Assessment of drug-drug interactions among patients with hematologic malignancy: A clinical pharmacist-led study. Journal of Oncology Pharmacy Practice, 2024: p. 10781552241281664. DOI: 10.1177/10781552241281664
Kyle RA, Gertz MA, Witzig TE. et al. Review of 1027 patients with newly diagnosed multiple myeloma. in Mayo clinic proceedings. 2003. Elsevier.DOI: 10.4065/78.1.21
Mohty B, El-Cheikh J, Yakoub-Agha İ, et al., Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. haematologica, 2010. 95(2): p. 311. DOI: 10.3324/haematol.2009.012674
Dimopoulos MA, Terpos E, Boccadoro M, et al. EHA–EMN Evidence-Based Guidelines for diagnosis, treatment and follow-up of patients with multiple myeloma. Nature Reviews Clinical Oncology, 2025: p. 1-21. DOI: 10.1038/s41571-025-01041-x
Lewis WD, Lilly S, and Jones KL, Lymphoma: diagnosis and treatment. American family physician, 2020. 101(1): p. 34-41.
Ng EST, Liew Y, Koh LP, et. al., Fluoroquinolone prophylaxis against febrile neutropenia in areas with high fluoroquinolone resistance—an Asian perspective. Journal of the Formosan Medical Association, 2010. 109(9): p. 624-631. DOI: 10.1016/S0929-6646(10)60102-7
Massaro F, Andreozzi F, Vandevoorde C, et al., Supportive Care in Older Lymphoma Patients to Reduce Toxicity and Preserve Quality of Life. Cancers, 2023. 15(22): p. 5381. DOI: 10.3390/cancers15225381
Rafei H, Kantarjian HM, and Jabbour EJ. Recent advances in the treatment of acute lymphoblastic leukemia. Leukemia & lymphoma, 2019. 60(11): p. 2606-2621. DOI: 10.1080/10428194.2019.1605071
Tapliz RA, Kennedy EB, Bow EJ, et al., Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. Journal of Clinical Oncology, 2018. 36(30): p. 3043-3054. DOI: 10.1200/JCO.18.00374
MacMillan ML, Goodman JL, DeFor TE, et al. Fluconazole to prevent yeast infections in bone marrow transplantation patients:: A randomized trial of high versus reduced dose, and determination of the value of maintenance therapy. The American journal of medicine, 2002. 112(5): p. 369-379. DOI: 10.1016/s0002-9343(01)01127-5
Pelcovits A, and Niroula R, Acute myeloid leukemia: a review. Rhode Island medical journal, 2020. 103(3): p. 38-40.
Shadman M. Diagnosis and treatment of chronic lymphocytic leukemia: a review. Jama, 2023. 329(11): p. 918-932. DOI: 10.1001/jama.2023.1946
Jabbour E, and Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. American journal of hematology, 2020. 95(6): p. 691-709. DOI: 10.1002/ajh.25792
Maneikis K, Sablauskas K, Ringeleviciute U, et al. Immunogenicity of the BNT162b2 COVID-19 mRNA vaccine and early clinical outcomes in patients with haematological malignancies in Lithuania: a national prospective cohort study. The Lancet Haematology, 2021. 8(8): p. e583-e592.
https://www.uptodate.com/drug-interactions/?source=responsive_home#di-druglist. Accesed date: 12/09/2025.
Perrone G, Hideshima T, Ikeda H, et al. Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia, 2009. 23(9): p. 1679-1686. DOI: 10.1038/leu.2009.83
Burtenshaw AJ, Sellors G and Downing R. Presumed interaction of fusidic acid with simvastatin. Anaesthesia, 2008. 63(6): p. 656-658. DOI: 10.1111/j.1365-2044.2007.05434.x
Kotanko P, Kirisits W, and Skrabal F, Rhabdomyolysis and acute renal graft impairment in a patient treated with simvastatin, tacrolimus, and fusidic acid. Nephron, 2002. 90(2): p. 234-235. DOI: 10.1159/000049053
Rajkumar SV, and Blood E. Lenalidomide and venous thrombosis in multiple myeloma. The New England journal of medicine, 2006. 354(19): p. 2079-2080.
Naggar VF, Khalil SA, and Gouda MW. Effect of concomitant administration of magnesium trisilicate on GI absorption of dexamethasone in humans. Journal of Pharmaceutical Sciences, 1978. 67(7): p. 1029-1030. DOI: 10.1002/jps.2600670746
McLelland J, and Jack W. Phenytoin/dexamethasone interaction: a clinical problem. The Lancet, 1978. 311(8073): p. 1096-1097. DOI: 10.1016/s0140-6736(78)90938-8
Gupta N, Hanley MJ, Venkatakrishnan K, et al. Effects of strong CYP3A inhibition and induction on the pharmacokinetics of ixazomib, an oral proteasome inhibitor: results of drug‐drug interaction studies in patients with advanced solid tumors or lymphoma and a physiologically based pharmacokinetic analysis. The Journal of Clinical Pharmacology, 2018. 58(2): p. 180-192. doi: 10.1002/jcph.988
Fattore C, Cipolla G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism by oxcarbazepine in healthy women. Epilepsia, 1999. 40(6): p. 783-787. DOI: 10.1111/j.1528-1157.1999.tb00779.x
Dawson AP, Frick CD, Burd M, et al. Clinical significance of coadministration of moderate to strong CYP enzyme inhibitors with doxorubicin in breast cancer patients receiving AC chemotherapy. Journal of Oncology Pharmacy Practice, 2025. 31(1): p. 58-64. DOI: 10.1177/10781552231223125
Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer, 1994. 74(3): p. 834-841. DOI: 10.1002/1097-0142(19940801)74:3<834::aid-cncr2820740308>3.0.co;2-9
Vaccher E, Spina M, Gennaro G, et al. Concomitant cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy plus highly active antiretroviral therapy in patients with human immunodeficiency virus‐related, non‐Hodgkin lymphoma. Cancer, 2001. 91(1): p. 155-163. doi: 10.1002/1097-0142(20010101)91:1<155::aid-cncr20>3.0.co;2-b.
Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of clinical oncology, 1997. 15(4): p. 1318-1332. DOI: 10.1200/JCO.1997.15.4.1318
Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin's lymphoma: a phase 1, open-label, dose-escalation study. The lancet oncology, 2013. 14(13): p. 1348-1356. DOI: 10.1016/S1470-2045(13)70501-1
Matthews J. Pulmonary toxicity of ABVD chemotherapy and G-CSF in Hodgkin's disease: possible synergy. The Lancet, 1993. 342(8877): p. 988. DOI: 10.1016/0140-6736(93)92033-p
Witschi H, and Hakkinen P. The role of toxicological interactions in lung injury. Environmental Health Perspectives, 1984. 55: p. 139-148. doi: 10.1289/ehp.8455139
Goldiner PL, Carlon GC, Cvitkovic E, et al. Factors influencing postoperative morbidity and mortality in patients treated with bleomycin. Br Med J, 1978. 1(6128): p. 1664-1667. DOI: 10.1136/bmj.1.6128.1664
INGRASSIA III TS, Ryu JH, Trastek VF, et al. Oxygen-exacerbated bleomycin pulmonary toxicity. in Mayo Clinic Proceedings. 1991. Elsevier. DOI: 10.1016/s0025-6196(12)60489-3
Lum BL, Kaubisch S, Yahanda AM, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. Journal of Clinical Oncology, 1992. 10(10): p. 1635-1642. DOI: 10.1200/JCO.1992.10.10.1635
Rodman JH, Murry DJ, Madden T, et al. Altered etoposide pharmacokinetics and time to engraftment in pediatric patients undergoing autologous bone marrow transplantation. Journal of clinical oncology, 1994. 12(11): p. 2390-2397. DOI: 10.1200/JCO.1994.12.11.2390
Villikka K, Kivistö KT, Maenpaa H, et al. Cytochrome P450‐inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clinical Pharmacology & Therapeutics, 1999. 66(6): p. 589-593. DOI: 10.1053/cp.1999.v66.103403001
Yang L, Yu L, Chen X, et al. Clinical analysis of adverse drug reactions between vincristine and triazoles in children with acute lymphoblastic leukemia. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2015. 21: p. 1656. doi: 10.12659/MSM.893142
Floyd, J.D., et al., Cardiotoxicity of cancer therapy. Journal of Clinical Oncology, 2005. 23(30): p. 7685-7696.
Dhesi, S., et al., Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. Journal of investigative medicine high impact case reports, 2013. 1(1): p. 2324709613480346.
Uribe, M., et al., Decreased bioavailability of prednisone due to antacids in patients with chronic active liver disease and in healthy volunteers. Gastroenterology, 1981. 80(4): p. 661-665.
Nilsson, C., et al., The effect of metronidazole on busulfan pharmacokinetics in patients undergoing hematopoietic stem cell transplantation. Bone marrow transplantation, 2003. 31(6): p. 429-435.
Guay, D.R., Quinolones, in Drug interactions in infectious diseases. 2011, Springer. p. 277-332.
Marr, K.A., et al., Cyclophosphamide metabolism is affected by azole antifungals. Blood, 2004. 103(4): p. 1557-1559.
Pana, Z.D. and E. Roilides, Risk of azole‐enhanced vincristine neurotoxicity in pediatric patients with hematological malignancies: Old problem–New Dilemma. Pediatric blood & cancer, 2011. 57(1): p. 30-35.
Cornely, O.A., et al., Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. New England Journal of Medicine, 2007. 356(4): p. 348-359.
King, L.D., H. Sia, and S. Anoopkumar‐Dukie, Trimethoprim‐sulfamethoxazole as Pneumocystis jiroveci pneumonia prevention in patients undergoing methotrexate therapy for hematological malignancies: A review of the literature. 2021, Wiley Online Library.
Raoul, J., et al., Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure. ESMO open, 2023. 8(1): p. 100880.
Haouala, A., et al., Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood, The Journal of the American Society of Hematology, 2011. 117(8): p. e75-e87.
Templeton, I., et al., A physiologically based pharmacokinetic modeling approach to predict drug–drug interactions between domperidone and inhibitors of CYP3A4. Biopharmaceutics & Drug Disposition, 2016. 37(1): p. 15-27.
Flockhart, D.A., et al., Studies on the mechanism of a fatal clarithromycin-pimozide interaction in a patient with Tourette syndrome. Journal of clinical psychopharmacology, 2000. 20(3): p. 317-324.
Kivistö, K.T., et al., Repeated consumption of grapefruit juice considerably increases plasma concentrations of cisapride. Clinical Pharmacology & Therapeutics, 1999. 66(5): p. 448-453.
Yasui, N., et al., A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clinical Pharmacology & Therapeutics, 1996. 59(5): p. 514-519.
Suri, A., W.P. Forbes, and S.L. Bramer, Effects of CYP3A inhibition on the metabolism of cilostazol. Clinical pharmacokinetics, 1999. 37(Suppl 2): p. 61-68.
Wason, S., J.L. DiGiacinto, and M.W. Davis, Effects of grapefruit and Seville orange juices on the pharmacokinetic properties of colchicine in healthy subjects. Clinical therapeutics, 2012. 34(10): p. 2161-2173.
Böttiger, Y., et al., Pharmacokinetic interaction between single oral doses of ditiazem and sirolimus in healthy volunteers. Clinical Pharmacology & Therapeutics, 2001. 69(1): p. 32-40.
Bolton, A.E., et al., Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer chemotherapy and pharmacology, 2004. 53(2): p. 102-106.
Wang, J., et al., Contrasting effects of diclofenac and ibuprofen on active imatinib uptake into leukaemic cells. British journal of cancer, 2012. 106(11): p. 1772-1778.
Zhang, H., et al., Inhibitory effect of single and repeated doses of nilotinib on the pharmacokinetics of CYP3A substrate midazolam. The Journal of Clinical Pharmacology, 2015. 55(4): p. 401-408.
Johnson, F.M., et al., Phase 1 pharmacokinetic and drug‐interaction study of dasatinib in patients with advanced solid tumors. Cancer: Interdisciplinary International Journal of the American Cancer Society, 2010. 116(6): p. 1582-1591.
Vandael, E., et al., Development of a risk score for QTc-prolongation: the RISQ-PATH study. International journal of clinical pharmacy, 2017. 39(2): p. 424-432.
Gass-Jégu, F., et al., Gastrointestinal perforations in patients treated with erlotinib: a report of two cases with fatal outcome and literature review. Lung Cancer, 2016. 99: p. 76-78.
Hamilton, M., et al., Effects of smoking on the pharmacokinetics of erlotinib. Clinical Cancer Research, 2006. 12(7): p. 2166-2171.
Hamilton, M., et al., The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer chemotherapy and pharmacology, 2014. 73(3): p. 613-621.
Rakhit, A., et al., The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer-based simulation (SimCYP™) predicts in vivo metabolic inhibition. European journal of clinical pharmacology, 2008. 64(1): p. 31-41.