Üriner Sistem Taş Hastalığında Görüntüleme Yöntemlerinin Evrimi: Yapay Zekâ Destekli Radyoloji Ve 3d Rekonstrüksiyonların Rolü

Yazarlar

Enis Mert Yorulmaz

Özet

Bu bölümde böbrek taşlarının retrograd intrarenal cerrahi (RIRS) ile tedavisinde yeni nesil aspirasyonlu üreteral erişim kılıfları (SUAS) özetlenmektedir. Nephrolithiasis yükü ve <2 cm taşlarda fleksibl üreteroskopinin üstünlükleri sunulduktan sonra, taşsızlık oranlarını sınırlayan başlıca sorunlar; yükselmiş intrarenal basınç (IRP) ve taş tozu ve fragmanlarının yetersiz uzaklaştırılması vurgulandı. Negatif basınçla aktif drenaj sağlayan, sıklıkla yönlendirilebilir uç ve basınç sensörü içeren SUAS; IRP’yi güvenli aralıkta tutar, görselliği iyileştirir, fragman uzaklaştırmasını hızlandırır ve operasyon süresini kısaltabilir. ClearPetra®, FV-UAS®, FANS®, Irriflex®, VACureteral® gibi sistemlerin özellikleri aktarıldı. Preklinik ve klinik veriler; daha yüksek taşsızlık, daha düşük komplikasyon, DJ stent gereksiniminde azalma ve özellikle alt kaliks gibi zor anatomiler ile seçilmiş pediatrik olgularda etkinlik göstermektedir. Bildirilen yan etkiler çoğunlukla hafif düzeydedir. Robotik RIRS ve yapay zekâ/sensör entegrasyonlarıyla basınç, navigasyon ve gerçek zamanlı litotripsi optimizasyonunun mümkün olacağını öngörüldü; SUAS’ın modern endoürolojide yardımcı araçtan temel bileşene evrildiği sonucu çıkarıldı.

Referanslar

Scales CD, Smith AC, Hanley JM, et al. Prevalence of kidney stones in the United States. Eur Urol;62:160–5. https://doi.org/10.1016/j.eururo.2012.03.052.

Stamatelou K, Goldfarb DS. Epidemiology of Kidney Stones. Healthcare (Basel);11:424. https://doi.org/10.3390/healthcare11030424.

Morgan TN, Shahait M, Maganty A, et al. Conservative Management of Staghorn Calculi: When Is It Safe? J Endourol;32:541–5. https://doi.org/10.1089/end.2018.0002.

Masch WR, Cronin KC, Sahani DV, et al. Imaging in Urolithiasis. Radiol Clin North Am;55:209–24. https://doi.org/10.1016/j.rcl.2016.10.002.

Dyer RB, Chen MY, Zagoria RJ. Intravenous urography: technique and interpretation. Radiographics;21:799–821; discussion 822-824. https://doi.org/10.1148/radiographics.21.4.g01jl26799.

Ganesan V, De S, Greene D, et al. Accuracy of ultrasonography for renal stone detection and size determination: is it good enough for management decisions? BJU Int;119:464–9. https://doi.org/10.1111/bju.13605.

Akram M, Jahrreiss V, Skolarikos A, et al. Urological Guidelines for Kidney Stones: Overview and Comprehensive Update. J Clin Med;13:1114. https://doi.org/10.3390/jcm13041114.

Kaul I, Moore S, Barry E, et al. Renal Imaging in Stone Disease: Which Modality to Choose? R I Med J (2013);106:31–5.

Puttmann K, Dajusta D, Rehfuss AW. Does twinkle artifact truly represent a kidney stone on renal ultrasound? J Pediatr Urol;17:475.e1-475.e6. https://doi.org/10.1016/j.jpurol.2021.03.026.

Türk C, Petřík A, Sarica K, et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol;69:468–74. https://doi.org/10.1016/j.eururo.2015.07.040.

Dhar M, Denstedt JD. Imaging in diagnosis, treatment, and follow-up of stone patients. Adv Chronic Kidney Dis;16:39–47. https://doi.org/10.1053/j.ackd.2008.10.005.

Fuchs T, Kachelriess M, Kalender WA. Technical advances in multi-slice spiral CT. Eur J Radiol;36:69–73. https://doi.org/10.1016/s0720-048x(00)00269-2.

Sandrasegaran K, Rydberg J, Tann M, et al. Benefits of routine use of coronal and sagittal reformations in multi-slice CT examination of the abdomen and pelvis. Clin Radiol;62:340–7. https://doi.org/10.1016/j.crad.2006.09.030.

Elton DC, Turkbey EB, Pickhardt PJ, et al. A deep learning system for automated kidney stone detection and volumetric segmentation on non-contrast CT scans. Med Phys;49:2545–54. https://doi.org/10.1002/mp.15518.

Boyce CJ, Pickhardt PJ, Lawrence EM, et al. Prevalence of urolithiasis in asymptomatic adults: objective determination using low dose noncontrast computerized tomography. J Urol;183:1017–21. https://doi.org/10.1016/j.juro.2009.11.047.

Maravilla KR, Murry RC, Deck M, et al. Clinical application of digital tomosynthesis: a preliminary report. AJNR Am J Neuroradiol;4:277–80.

Liu S, Wang H, Feng W, et al. The value of X-ray digital tomosynthesis in the diagnosis of urinary calculi. Exp Ther Med;15:1749–53. https://doi.org/10.3892/etm.2017.5531.

Sandhu MS, Gulati A, Saritha J, et al. Urolithiasis: Comparison of diagnostic performance of digital tomosynthesis and ultrasound. Which one to choose and when? Eur J Radiol;105:25–31. https://doi.org/10.1016/j.ejrad.2018.05.017.

Ferrari A, Bertolaccini L, Solli P, et al. Digital chest tomosynthesis: the 2017 updated review of an emerging application. Ann Transl Med;6:91. https://doi.org/10.21037/atm.2017.08.18.

Primak AN, Fletcher JG, Vrtiska TJ, et al. Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol;14:1441–7. https://doi.org/10.1016/j.acra.2007.09.016.

Li X, Wang L-P, Ou L-L, et al. Revolution spectral CT for urinary stone with a single/mixed composition in vivo: a large sample analysis. World J Urol;39:3631–42. https://doi.org/10.1007/s00345-021-03597-6.

Gutjahr R, Polster C, Henning A, et al. Dual Energy CT Kidney Stone Differentiation in Photon Counting Computed Tomography. Proc SPIE Int Soc Opt Eng;10132:1013237. https://doi.org/10.1117/12.2252021.

Kobayashi M, Ishioka J, Matsuoka Y, et al. Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray. BMC Urol;21:102. https://doi.org/10.1186/s12894-021-00874-9.

Carius BM, Long B. Is This Your Stone? Distinguishing Phleboliths and Nephroliths on Imaging in the Emergency Department Setting. J Emerg Med;62:316–23. https://doi.org/10.1016/j.jemermed.2021.10.034.

Benson JC, Nardi V, Madhavan AA, et al. Reassessing the Carotid Artery Plaque “Rim Sign” on CTA: A New Analysis with Histopathologic Confirmation. AJNR Am J Neuroradiol;43:429–34. https://doi.org/10.3174/ajnr.A7443.

Zheng J, Yu H, Batur J, et al. A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning. Kidney Int;100:870–80. https://doi.org/10.1016/j.kint.2021.05.031.

Mohammadinejad P, Ferrero A, Bartlett DJ, et al. Automated radiomic analysis of CT images to predict likelihood of spontaneous passage of symptomatic renal stones. Emerg Radiol;28:781–8. https://doi.org/10.1007/s10140-021-01915-4.

Nedbal C, Adithya S, Naik N, et al. Can Machine Learning Correctly Predict Outcomes of Flexible Ureteroscopy with Laser Lithotripsy for Kidney Stone Disease? Results from a Large Endourology University Centre. Eur Urol Open Sci;64:30–7. https://doi.org/10.1016/j.euros.2024.05.004.

Alves BM, Belkovsky M, Passerotti CC, et al. Use of artificial intelligence for sepsis risk prediction after flexible ureteroscopy: a systematic review. Rev Col Bras Cir;50:e20233561. https://doi.org/10.1590/0100-6991e-20233561-en.

Zhu G, Li C, Guo Y, et al. Predicting stone composition via machine-learning models trained on intra-operative endoscopic digital images. BMC Urology;24:5. https://doi.org/10.1186/s12894-023-01396-2.

Zhang J, Qing J, Hu K, et al. Integrating 3D technology with the Sampaio classification for enhanced percutaneous nephrolithotomy in complex renal calculi treatment. Front Surg;11. https://doi.org/10.3389/fsurg.2024.1471958.

Panthier F, Traxer O, Yonneau L, et al. Evaluation of a free 3D software for kidney stones’ surgical planning: “kidney stone calculator” a pilot study. World J Urol;39:3607–14. https://doi.org/10.1007/s00345-021-03671-z.

Cui D, Yan F, Yi J, et al. Efficacy and safety of 3D printing-assisted percutaneous nephrolithotomy in complex renal calculi. Sci Rep;12:417. https://doi.org/10.1038/s41598-021-03851-2.

Wijerathne MLL, Hori M, Sakaguchi H, et al. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy. IOP Conf Ser: Mater Sci Eng;10:012120. https://doi.org/10.1088/1757-899X/10/1/012120.

Alharbi AS, Gameraddin M, Gareeballah A, et al. Assessment of Hounsfield Units and Factors Associated with Fragmentation of Renal Stones by Extracorporeal Shock Wave Lithotripsy: A Computerized Tomography Study. Tomography;10:90–100. https://doi.org/10.3390/tomography10010008.

İndir

Yayınlanan

2 Ekim 2025

Lisans

Lisans