Diş Hekimliğinde Yeni Ufuklar: Minimal İnvaziv Yaklaşımlar, Yapay Zekâ ve Sanal Gerçeklik
Özet
Bu bölüm, diş hekimliğinde yenilikçi yaklaşımları minimal invaziv diş hekimliği (MID), yapay zekâ (YZ) ve sanal gerçeklik (VR) perspektifleriyle ele almaktadır. MID, doku koruyucu ve önleyici uygulamalarla geleneksel tedavi anlayışını dönüştürürken; YZ, tanısal doğruluk ve tedavi planlamasında klinisyenlere güçlü bir karar desteği sunmaktadır. VR tabanlı simülasyon sistemleri ise diş hekimliği eğitiminde bilişsel ve psikomotor becerilerin güvenli, etkin ve ölçülebilir biçimde geliştirilmesine katkıda bulunmaktadır. Güncel kullanım alanları, karşılaşılan sınırlılıklar ve geleceğe yönelik olasılıklar bilimsel bulgular ışığında tartışılmakta; etik değerler, empati ve hasta merkezli yaklaşımın teknolojik yeniliklerle nasıl bütünleşebileceği vurgulanmaktadır.
Referanslar
Cesur Aydın K. Ağız, Diş ve Çene Radyolojisinde Yapay Zekâ Uygulamaları Neler Yapabiliyor? Turkiye Klinikleri Oral and Maxillofacial Radiology-Special Topics. 2023;9(1): 9-15.
Schwendicke F, Golla T, Dreher M, et al. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry. 2019;91: 103226. https://doi.org/10.1016/j.jdent.2019.103226
Desai H, Stewart CA, Finer Y. Minimally invasive therapies for the management of dental caries—A literature review. Dentistry Journal. 2021;9(12): 147. https://doi.org/10.3390/dj9120147
Frencken JE, Peters MC, Manton DJ, et al. Minimal intervention dentistry for managing dental caries – a review. International Dental Journal. 2012;62(2): 3–14. https://doi.org/10.1111/idj.12007
Semerci ZM, Yardımcı S. Empowering Modern Dentistry: The Impact of Artificial Intelligence on Patient Care and Clinical Decision Making. Diagnostics.2024;14(12):1260. https://doi.org/10.3390/diagnostics14121260
Pottle J. Virtual reality and the transformation of medical education. Future Healthcare Journal. 2019;6(3):181–185. https://doi.org/10.7861/fhj.2019-0036
Farag A, Hashem D. Impact of the haptic virtual reality simulator on dental students’ psychomotor skills in preclinical operative dentistry. Clinics and Practice. 2022;12(1):17–26. https://doi.org/10.3390/clinpract12010003
Alam BF, Najmi MA, Qasim SB, et al. A bibliometric analysis of minimally invasive dentistry: A review of the literature from 1994 to 2021. Research and Education. 2021:1–2. https://doi.org/10.1016/j.prosdent.2021.09.023
Featherstone JD. The science and practice of caries prevention. Journal of the American Dental Association. 2000;131(7):887–899. https://doi.org/10.14219/jada.archive.2000.0307
Baccolini V, et al. The Role of Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) in White Spot Lesion Remineralization—A Systematic Review. Journal of Functional Biomaterials. 2025;16(8):272. https://doi.org/10.3390/jfb16080272
Pushpalatha C, Gayathri VS, Sowmya SV, et al. Nanohydroxyapatite in dentistry: A comprehensive review. The Saudi Dental Journal. 2023;35(6):741-752. https://doi.org/10.1016/j.sdentj.2023.05.018
Sleem MM, Eid ESG, Abdelghany AM, et al. Evaluation of the remineralization potential of different bioactive glass varnishes on white spot lesions: an in vitro study. BMC Oral Health. 2025;25(1):1284. https://doi.org/10.1186/s12903-025-06665-0
Tyagi G, Jain S, Deshwal S, et al. Comparative study of dentin remineralization with Nano-amorphous calcium phosphate-modified bioactive restoratives. Journal of Oral Biology and Craniofacial Research. 2025;15(4):684-690. https://doi.org/10.1016/j.jobcr.2025.04.009
Alkilzy M, Tarabaih A, Santamaria RM, et al. Self-assembling peptide P11-4 and fluoride for regenerating enamel. Journal of Dental Research. 2018;97(2):148-154. https://doi.org/10.1177/0022034517730531
Naim J, Sen S. The Remineralizing and Desensitizing Potential of Hydroxyapatite in Dentistry: A Narrative Review of Recent Clinical Evidence. Journal of Functional Biomaterials. 2025;16(9):325. https://www.mdpi.com/2079-4983/16/9/325#
Tyas MJ, Anusavice KJ, Frencken JE, et al. Minimal intervention dentistry—a review. FDI Commission Project 1e97. International Dental Journal. 2000;50(1):1–2. https://doi.org/10.1111/j.1875-595x.2000.tb00540.x
Arrow P, McPhee R, Atkinson D, et al. Minimally invasive dentistry based on atraumatic restorative treatment to manage early childhood caries in rural and remote aboriginal communities: Protocol for a randomized controlled trial. JMIR Research Protocols. 2018;7(7): e10322. https://doi.org/10.2196/10322
Kielbassa AM, Muller J, Gernhardt CR. Closing the gap between oral hygiene and minimally invasive dentistry: A review on the resin infiltration technique of incipient (proximal) enamel lesions. Quintessence International. 2009;40(8):663–681.
Silva EJNL, Martins JNR, Resende BF. Ten years of minimally invasive access cavities in endodontics: A bibliometric analysis. Restorative Dentistry & Endodontics. 2021;46(e42):1–15. https://doi.org/10.5395/rde.2021.46.e42
Alsolamy M, Nadeem F, Azhari AA, et al. Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning. Computers in Biology and Medicine. 2024; 183:109262. https://doi.org/10.1016/j.compbiomed.2024.109262
Ari T, Sağlam H, Öksüzoğlu H, et al. Automatic feature segmentation in dental periapical radiographs. Diagnostics. 2022;12(12):3081. https://doi.org/10.3390/diagnostics12123081
Bonfanti-Gris M, Herrera A, Salido Rodríguez-Manzaneque MP, et al. Deep learning for tooth detection and segmentation in panoramic radiographs: a systematic review and meta-analysis. BMC Oral Health. 2025;25(1):1280. https://doi.org/10.1186/s12903-025-06349-9
Miki Y, Muramatsu C, Hayashi T, et al. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification. In: Medical Imaging 2017: Computer-Aided Diagnosis (Vol. 10134). 11-16 Şubat 2017, Orlando, Florida, USA: SPIE; 2017. p. 874-879. http://dx.doi.org/10.1117/12.2254332
Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry. 2018; 77:106-111. https://doi.org/10.1016/j.jdent.2018.07.015
Casalegno F, Newton T, Daher R, et al. Caries detection with near-infrared transillumination using deep learning. Journal of Dental Research. 2019;98(11):1227–1233. https://doi.org/10.1177/0022034519871884
Hung M, Voss MW, Rosales MN, et al. Application of machine learning for diagnostic prediction of root caries. Gerodontology. 2019;36(4):395–404. https://doi.org/10.1111/ger.12432
Musri N, Christie B, Ichwan SJA, et al. Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review. Imaging Science in Dentistry. 2021;51(3):237. https://doi.org/10.5624/isd.20210074
Lee S, Oh SI, Jo J, et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports. 2021;11(1):16807. https://doi.org/10.1038/s41598-021-96368-7
Tan R, Zhu X, Chen S, et al. Caries lesions diagnosis with deep convolutional neural network in intraoral QLF images by handheld device. BMC Oral Health. 2024;24(1):754. https://doi.org/10.1186/s12903-024-04517-x
Bahammam, S. A. Prediction of dental caries in children through machine learning. Journal of Clinical Pediatric Dentistry. 2025;49(5):158-167. https://www.jocpd.com/articles/10.22514/jocpd.2025.110
Murata M, Ariji Y, Ohashi Y, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiology. 2019;35(3):301–307. https://doi.org/10.1007/s11282-018-0363-7
Lee SJ, Chung D, Asano A, et al. Diagnosis of tooth prognosis using artificial intelligence. Diagnostics. 2022;12(6):1422. https://doi.org/10.3390/diagnostics12061422
Khanagar SB, Al-Ehaideb A, Vishwanathaiah S. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - A systematic review. Journal of Dental Sciences. 2021;16(1):482–492. https://doi.org/10.1016/j.jds.2020.05.022
Hung K, Montalvao C, Tanaka R, et al. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiology. 2020;49(1):20190107. https://doi.org/10.1259/dmfr.20190107
Challen R, Denny J, Pitt M, et al. Artificial intelligence, bias and clinical safety. BMJ Quality & Safety. 2019;28(3):231–237. https://doi.org/10.1136/bmjqs-2018-008370
Schoenherr JR, Abbas R, Michael K, et al. Designing AI using a human-centered approach: Explainability and accuracy toward trustworthiness. IEEE Transactions on Technology and Society. 2023;4(1):9–23. https://doi.org/10.1109/TTS.2023.3257627
Kim J, Cai ZR, Chen ML, et al. Assessing Biases in Medical Decisions via Clinician and AI Chatbot Responses to Patient Vignettes. JAMA Network Open. 2023;6(10): e2338050–e2338050. https://doi.org/10.1001/jamanetworkopen.2023.38050
Gurusamy K, Aggarwal R, Palanivelu L, et al. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database of Systematic Reviews. 2009;(1):CD006575. https://doi.org/10.1002/14651858.cd006575.pub2
Towers AC. Deconstructed Learning in Pre-Clinical Dental Education Using Virtual Reality Simulation [Doktora tezi]. White Rose eTheses Online; 2023.
Wang D, Zhao X, Shi Y, et al. Six degree-of-freedom haptic simulation of probing dental caries within a narrow oral cavity. IEEE Transactions on Haptics. 2016;9(2):279–291. https://doi.org/10.1109/toh.2016.2531660
Hadjichristou C, Kokoti M, Bakopoulou A. Haptics in fixed prosthodontics and their role in dental education: A literature review. Journal of Dental Education. 2024;88(8):1020–1028. https://doi.org/10.1002/jdd.13533
Moussa R, Alghazaly A, Althagafi N, et al. Effectiveness of Virtual Reality and Interactive Simulators on Dental Education Outcomes: Systematic Review. European Journal of Dentistry. 2022;16(3): e42. https://doi.org/10.1055/s-0041-1731837
Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Medical Education. 2012;46(7):636–647. https://doi.org/10.1111/j.1365-2923.2012.04243.x
Schoenherr JR, Hamstra SJ. Beyond fidelity: Deconstructing the seductive simplicity of fidelity in simulator-based education in the health care professions. Simulation in Healthcare. 2017;12(2):117–123. https://doi.org/10.1097/sih.0000000000000226
Massoth C, Röder H, Ohlenburg H, et al. High-fidelity is not superior to low-fidelity simulation but leads to overconfidence in medical students. BMC Medical Education. 2019;19(1):1–8. https://doi.org/10.1186/s12909-019-1464-7
Salari N, Ghasemnezhad F, Almasi-Hashiani A, et al. The Impact of Different Teaching Methods on Clinical Reasoning and Clinical. Journal of Dental Education. 2025; 0:1–15. https://doi.org/10.1002/jdd.13930
Koufidis C, Manninen K, Nieminen J, et al. Grounding judgement in context: A conceptual learning model of clinical reasoning. Medical Education. 2020;54(11):1019–1028. https://doi.org/10.1111/medu.14222
Gardner AK, Abdelfattah K, Wiersch J, et al. Embracing errors in simulation-based training: The effect of error training on retention and transfer of central venous catheter skills. Journal of Surgical Education. 2015;72(6): e158–e162. https://doi.org/10.1016/j.jsurg.2015.08.002
Uribe SE, Maldupa I, Schwendicke F. Integrating Generative AI in Dental Education: A Scoping Review of Current Practices and Recommendations. European Journal of Dental Education. 2025:1–15. https://doi.org/10.1111/eje.13074
Cutrer WB, Miller B, Pusic MV, et al. Fostering the development of master adaptive learners: a conceptual model to guide skill acquisition in medical education. Academic Medicine. 2017;92(1):70-75. https://doi.org/10.1097/acm.0000000000001323