Üç Boyutlu Yazıcıların Diş Hekimliğindeki Yeri ve Geleceği
Özet
Diş hekimliğinde dijitalleşme ve yenilikçi teknolojiler, geleneksel yöntemlerin yerini daha modern ve verimli çözümlerle değiştirmektedir. Bu gelişmelerin en dikkat çekici örneklerinden biri üç boyutlu (3B) yazıcı teknolojisidir. Konvansiyonel yöntemlerde ölçü alımından laboratuvar sürecine kadar birçok hata riski bulunurken, 3B baskı teknolojisi tabakalı üretim prensibiyle daha hassas, hızlı ve kişiselleştirilmiş restorasyonlar sağlamaktadır. CAD/CAM sistemleriyle entegre çalışan bu teknoloji, karmaşık geometrilerin, biyobenzer yapıların ve bireye özgü tasarımların üretimine imkân tanımaktadır. 3B yazıcılar günümüzde prototiplemeden cerrahi rehberlere ve implant tasarımlarına kadar pek çok alanda kullanılmaktadır. Bu teknolojinin evrimiyle ortaya çıkan dört boyutlu (4B) yazıcılar ise çevresel uyaranlara yanıt veren akıllı malzemeler aracılığıyla gelecekte devrim niteliğinde uygulamalar vaat etmektedir. Ancak, biyouyumluluk, uzun dönem stabilite ve regülasyon konularında daha fazla bilimsel kanıta ihtiyaç duymaktadır. Yakın gelecekte 4B yazıcılar rütin olarak klinik pratiğe entegre edibilebilir.
Referanslar
Peng M, Li C, Huang C, et al. Digital technologies to facilitate minimally invasive rehabilitation of a severely worn dentition. Journal of Prosthodontic Dentistry. 2021;126(2):167–172.
Deste G, Durkan R. Monoblok zirkonya seramik sistemi ile estetik anterior kronlar: klinik vaka raporu. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2019;29(3):480–484.
Nguyen TT, Viet AN, Nguyen LT, et al. Restoration of anterior teeth defect with porcelain laminate veneer using the refractory technique: A Case Report. Cureus. 2024;16(8).
Torabi K, Farjood E, Hamedani S. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature. Journal of Dentistry (Shiraz, Iran). 2015;16(1):1–9.
Methani MM, Revilla‐León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review. Journal of Esthetic and Restorative Dentistry. 2020;32(2):182–192.
Azari A, Nikzad S. The evolution of Rapid Prototyping in Dentistry: A Review. Rapid Prototyping Journal. 2009;15(3):216–225.
Kessler A, Hickel R, Reymus M. 3D printing in dentistry—State of the art. Operative Dentistry. 2020;45(1):30–40.
Beaman JJ, Barlow JW, Bourell DL, et al. Solid freeform fabrication: a new direction in manufacturing. Boston, MA: Springer US; 1997.
Kodama H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Review of Scientific Instruments. 1981;52(11):1770–1773.
Ammoun R, Elkassaby H, Chien EC, et al. Glossary of Digital Dental Terms. Journal of Prosthodontics. 2021; 30:172–181.
Schweiger J, Edelhoff D, Güth JF. 3D printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. Journal of Clinical Medicine. 2021;10(9):2010.
Wohlers T. Wohlers report 2017: 3D printing and additive manufacturing state of the industry: annual worldwide progress report. 2017.
Su A, Al'Aref SJ. History of 3D printing. In: 3D Printing Applications in Cardiovascular Medicine. Academic Press; 2018. p. 1–10.
Khaing MW, Fuh JYH, Lu L. Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts. Journal of Materials Processing Technology. 2001;113(1–3):269–272.
ISO. ISO/ASTM 52900:2021. International Organization for Standardization. Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en [Accessed: 30 July 2025].
Soriano Heras E, Blaya Haro F, de Agustín del Burgo JM, et al. Plate auto-level system for fused deposition modelling (FDM) 3D printers. Rapid Prototyping Journal. 2017;23(2):401–413.
Taylor AC, Beirne S, Alici G, et al. System and process development for coaxial extrusion in fused deposition modelling. Rapid Prototyping Journal. 2017;23(3):543–550.
Lu Z, Ayeni OI, Yang X, et al. Microstructure and phase analysis of 3D-printed components using bronze metal filament. Journal of Materials Engineering and Performance. 2020;29(3):1650–1656.
Cuan-Urquizo E, Barocio E, Tejada-Ortigoza V, et al. Characterization of the mechanical properties of FFF structures and materials: A review. Materials. 2019;12(6):895.
Jain P, Kuthe AM. Feasibility study of manufacturing using rapid prototyping: FDM approach. Procedia Engineering. 2013; 63:4–11.
Alharbi N, Osman RB, Wismeijer D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. International Journal of Prosthodontics. 2016;29(5):503–510.
Osman RB, Alharbi N, Wismeijer D. Build angle: does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? International Journal of Prosthodontics. 2017;30(2).
Dawood A, Marti BM, Sauret-Jackson V, et al. 3D printing in dentistry. British Dental Journal. 2015;219(11):521–529.
Aly P, Mohsen C. Comparison of the accuracy of three-dimensional printed casts, digital, and conventional casts: an in vitro study. European Journal of Dentistry. 2020;14(2):189–193.
Sakly A, Kenzari S, Bonina D, et al. A novel quasicrystal-resin composite for stereolithography. Materials & Design. 2014; 56:280–285.
Makvandi P, Esposito Corcione C, Paladini F, et al. Antimicrobial modified hydroxyapatite composite dental bite by stereolithography. Polymers for Advanced Technologies. 2018;29(1):364–371.
França R, Winkler J, Hsu HH, et al. 3D printing—Additive manufacturing of dental biomaterials. In: Dental Biomaterials. 2019. p. 421–462.
Pan Y, Zhou C, Chen Y. A fast mask projection stereolithography process for fabricating digital models in minutes.
Sun C, Fang N, Wu DM, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical. 2005;121(1):113–120.
Ge L, Dong L, Wang D, et al. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sensors and Actuators A: Physical. 2018; 273:285–292.
Lu Y, Mapili G, Suhali G, et al. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. Journal of Biomedical Materials Research Part A. 2006;77(2):396–405.
Quan H, Zhang T, Xu H, et al. Photo-curing 3D printing technique and its challenges. Bioactive Materials. 2020;5(1):110–115.
Koo JW, Ho JS, An J, et al. A review on spacers and membranes: conventional or hybrid additive manufacturing? Water Research. 2021; 188:116497.
Methani MM, Revilla‐León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review. Journal of Esthetic and Restorative Dentistry. 2020;32(2):182–192.
Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Progress in Materials Science. 2015; 74:401–477.
Tolochko NK, Savich VV, Laoui T, et al. Dental root implants produced by the combined selective laser sintering/melting of titanium powders. Journal of Materials: Design and Applications. 2002;216(4):267–270.
Kruth JP, Vandenbroucke B, Van Vaerenbergh J, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. In: 11èmes Assises Européennes du Prototypage Rapide, AFPR 2005.
Okazaki Y, Ishino A. Microstructures and mechanical properties of laser-sintered commercially pure Ti and Ti-6Al-4V alloy for dental applications. Materials. 2020;13(3):609.
Chen Z, Li Z, Li J, et al. 3D printing of ceramics: A review. Journal of the European Ceramic Society. 2019;39(4):661–687.
Sing SL, Yeong WY, Wiria FE, et al. Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal. 2017;23(3):611–623.
Çakmak G, Donmez MB, Cuellar AR, et al. Additive or subtractive manufacturing of crown patterns used for pressing or casting: A trueness analysis. Journal of Dentistry. 2022; 124:104221.
Demiralp E, Doğru G, Yılmaz H. Additive manufacturing (3D PRINTING) methods and applications in dentistry. Clinical and Experimental Health Sciences. 2021;11(1):182–190.
Hofmann M. 3D printing gets a boost and opportunities with polymer materials. Science News. 2014.
Lipson H, Kurman M. Fabricated: The new world of 3D printing. John Wiley & Sons; 2013.
Hazeveld A, Slater JJH, Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. American Journal of Orthodontics and Dentofacial Orthopedics. 2014;145(1):108–115.
Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials. 2016;32(1):54–64.
Pei E, Loh GH. Technological considerations for 4D printing: an overview. Progress in Additive Manufacturing. 2018;3(1):95–107.
Zhou W, Qiao Z, Nazarzadeh Zare E, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. Journal of Medicinal Chemistry. 2020;63(15):8003–8024.
Sun W, Starly B, Daly AC, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002.
Behl M, Lendlein A. Shape-memory polymers. Materials Today. 2007;10(4):20–28.
Zare EN, Jamaledin R, Naserzadeh P, et al. Metal-based nanostructures/PLGA nanocomposites: antimicrobial activity, cytotoxicity, and their biomedical applications. ACS Applied Materials & Interfaces. 2019;12(3):3279–3300.
Nazarzadeh Zare E, Lakouraj MM, Baghayeri M. Electro-magnetic polyfuran/Fe3O4 nanocomposite: synthesis, characterization, antioxidant activity, and its application as a biosensor. International Journal of Polymeric Materials and Polymeric Biomaterials. 2015;64(4):175–183.
Cui H, Miao S, Esworthy T, et al. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research. 2019;12(6):1381–1388.
Manouras T, Vamvakaki M. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polymer Chemistry. 2017;8(1):74–96.
Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Materials Today. 2017;20(10):577–591.
Muzaffar A, Ahamed MB, Deshmukh K, et al. 3D and 4D printing of pH-responsive and functional polymers and their composites. In: 3D and 4D Printing of Polymer Nanocomposite Materials. Elsevier; 2020. p. 85–117.