Chiari Malformasyonları Elektrofizyoloji

Yazarlar

Özet

Chiari malformasyonu (CM), serebellar tonsillerin foramen magnum altına herniasyonu ile karakterize edilen bir nörolojik hastalıktır. Bu hastalık, beyin-omurilik sıvısının akışını engelleyerek intrakraniyal basıncı artırır, bu da baş ağrısı, baş dönmesi, disfaji ve disartri gibi semptomlara yol açar. Chiari malformasyonunun %60’ında siringomiyeli görülebilir, bu da omurilikte kistik genişlemelere neden olur ve motor fonksiyon kaybı ile birlikte ağrı, sıcaklık duyusu kaybı ve segmental güçsüzlük gibi belirtilerle sonuçlanabilir. Beyincik ve beyin sapındaki anatomik anomaliler motor yollar ve otonomik sistemi etkileyebilir, bu da spastisite, duyu kaybı ve skolyoz gibi bulgulara yol açabilir. Elektrofizyolojik testler, Chiari malformasyonunun tanı ve tedavi süreçlerinde kritik bir rol oynar. Özellikle intraoperatif elektrofizyolojik izleme, cerrahi sırasında sinir hasarını anında tespit etmek için kullanılır. Elektromiyografi, sinir iletim çalışmaları, somatosensoryal uyandırılmış potansiyeller, motor uyandırılmış potansiyeller ve beyin sapı uyandırılmış potansiyelleri gibi testler, motor ve duyusal yolların işlevselliğini izler. Bu testler, cerrahinin doğru bir şekilde yönlendirilmesine yardımcı olur, komplikasyon risklerini minimize eder ve nörolojik fonksiyonların korunmasını sağlar. Intraoperatif nörofizyolojik izleme, cerrahiden sonra postoperatif iyileşme sürecini hızlandırarak, hastaların daha hızlı ve sağlıklı bir şekilde toparlanmalarını sağlar. Bu durum, Chiari malformasyonu cerrahisinin başarısını doğrudan etkileyen, son derece önemli bir unsurdur.

Chiari malformation is a neurological disorder characterized by the herniation of the cerebellar tonsils below the foramen magnum. This condition obstructs the flow of cerebrospinal fluid, increasing intracranial pressure, which leads to symptoms such as headaches, dizziness, dysphagia, and dysarthria. In 60% of Chiari malformation cases, syringomyelia can occur, leading to cystic expansions in the spinal cord that cause pain, loss of temperature sensation, segmental weakness, and atrophy. Anatomical abnormalities in the cerebellum and brainstem may affect motor pathways and the autonomic system, resulting in findings such as spasticity, sensory loss, and scoliosis. Electrophysiological tests play a critical role in the diagnosis and treatment of Chiari malformation. In particular, intraoperative electrophysiological monitoring is used to detect nerve damage immediately during surgery. Electromyography, nerve conduction studies, somatosensory evoked potentials, motor evoked potentials, and brainstem evoked potentials monitor the functionality of motor and sensory pathways. These tests help guide the surgery, minimize complication risks, and ensure the preservation of neurological function. Intraoperative neurophysiological monitoring accelerates postoperative recovery by facilitating quicker and healthier recovery for patients. This is a crucial factor directly influencing the success of Chiari malformation surgery.

Referanslar

Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65-72.

Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Attenuation of somatosensory evoked potentials during positioning in a patient undergoing suboccipital craniectomy for Chiari I malformation with syringomyelia. J Child Neurol. 2001;16:936-939.

Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Improvement in brainstem auditory evoked potentials after suboccipital decompression in patients with Chiari I malformations. J Neurosurg. 2003;98:459-464.

Goel A, Laheri VK. Plate and screw fixation for atlanto-axial dislocation (technical report). ActaNeurochir (Wien). 1994;129:47-53.

Goel A, Desai K, Muzumdar D. Atlantoaxial fixation using plate and screw method: a report of 160 treated patients. Neurosurgery. 2002;51:1351-1357.

Goel A. Is atlantoaxial instability the cause of Chiari malformation? Outcome analysis of 65 patients treated by atlantoaxial fixation. J Neurosurg Spine. 2015;22:116-127.

Fujiwara A, Kobayashi N, Saiki K, Kitagawa T, Tamai K, Saotome K. Association of the Japanese Orthopaedic Association score with the Oswestry Disability Index, Roland-Morris Disability Questionnaire, and short-form 36. Spine (Phila Pa 1976). 2003;28:1601-1607.

Goel A. Goel’s classification of atlantoaxial “facetal” dislocation. J Craniovertebr Junction Spine. 2014; 5:3-8.

Goel A. Is Chiari malformation nature’s protective “air-bag”? Is its presence diagnostic of atlantoaxial instability? J Craniovertebr Junction Spine. 2014;5:107-109.

Goel A, Kaswa A, Shah A. Atlantoaxial fixation for treatment of Chiari formation and syringomyelia with no craniovertebral bone anomaly: report of an experience with 57 cases. Acta Neurochir Suppl. 2019;125:101-110.

Goel A, Gore S, Shah A, Dharurkar P, Vutha R, Patil A. Atlantoaxial fixation for Chiari 1 formation in pediatric age-group patients: report of treatment in 33 patients. World Neurosurg. 2018;111: e668-e677.

Goel A. Is Chiari a “formation” or a “malformation?”. J Craniovertebr Junction Spine. 2017;8:1-2. 13. Moncho D, Poca MA, Minoves T, et al. Are evoked potentials clinically useful in the study of patients with Chiari malformation type 1? J Neurosurg. 2017; 126:606-619.

Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70-75.

Barzilai O, Roth J, Korn A, et al. The value of multimodality intraoperative neurophysiological monitoring in treating pediatric Chiari malformation type I. Acta Neurochir (Wien). 2016;158:335-340.

Kawasaki Y, Uchida S, Onishi K, Toyokuni M, Okanari K, Fujiki M. Intraoperative neurophysiologic monitoring for prediction of postoperative neurological improvement in a child with Chiari type I malformation. J Craniofac Surg. 2017;28:1837-1841

P. Adjamian, S.F. Worthen, A. Hillebrand, P.L. Furlong, B.A. Chizh, A.R. Hobson, et al. Effective electromagnetic noise cancellation with beamformers and synthetic gradiometry in shielded and partly shielded environmentsJ Neurosci Methods, 178 (2009), pp. 120-127

H. Adriaensen, J. Gybels, H.O. Handwerker, J. van Hees. Response properties of thin myelinated (A-d) fibers in human skin nervesJ Neurophysiol, 49 (1983), pp. 111-122

K.V. Anderson, G.S. Pearl. Conduction velocities in afferent fibers from feline tooth pulp Exp Neurol, 43 (1974), pp. 281-283

K.V. Anderson, G.S. Pearl. C-Fiber activity in feline tooth pulp afferents Exp Neurol, 47 (1975), pp. 357-359

D.D. Atherton, P. Facer, K.M. Roberts, V.P. Misra, B.A. Chizh, C. Bountra, et al. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol, 7 (2007),

U. Baumgärtner, G.D. Iannetti, L. Zambreanu, P. Stoeter, R.D. Treede, I. Tracey. Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI studyJ Neurophysiol, 104 (2010), pp. 2863-2872

W. Baust, J. Jörg, J. Lang.SomatosensorischekortikaleReizantwortpotentiale bei adäquater Reizung und neurologischen Erkrankungen mit spezifischen Sensibilitätsstörungen. Z EEG-EMG, 5 (1974), pp. 31-39

C. Benedetti, C.R. Chapman, Y.H. Colpitts, A.C. Chen. Effect of nitrous oxide concentration on event-related potentials during painful tooth stimulation. Anesthesiology, 56 (1982), pp. 360-364

G. Bini, G. Cruccu, K.E. Hagbarth, W. Schady, E. Torebjörk.Analgesic effect of vibration and cooling on pain induced by intraneural electrical stimulation. Pain, 18 (1984), pp. 239-248

25.S. Brody, A. Angrilli, U. Weiss, N. Birbaumer, A. Mini, R. Veit, etal..Somatotosensory evoked potentials during baroreceptor stimulation in chronic low back pain patients and normal controlsInt J Psychophysiol, 25 (1997), pp. 201-210

B. Bromm, W. Meier. The intracutaneous stimulus: a new pain model for algesimetric studies. Methods Find Exp Clin Pharmacol, 6 (1984), pp. 405-410

B. Bromm, E. Scharein. Principal component analysis of pain-related cerebral potentials to mechanical and electrical stimulation in man. Electroencephalogr Clin Neurophysiol, 53 (1982), pp. 94-103

Nogues MA, Stalberg E. Electrodiagnostic findings in syringomyelia. Muscle Nerve 1999;22:1653-1659

Veilleux M, Stevens JC. Syringomyelia: electrophysiologic aspects. Muscle Nerve 1987;10:449-458.

F. Cervero. Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev, 74 (1994), pp. 95-138

Hort-Legrand C, Emery E. Evoked motor and sensory potentials in syringomyelia. Neurochirurgie. 1999;45(Suppl 1):95–104

Jabbari B, Geyer C, Gunderson C, Chu A, Brophy J, McBurney JW, Jonas B. Somatosensory evoked potentials and magnetic resonance imaging in syringomyelia. Electroencephalogr Clin Neurophysiol. 1990;77:277–85.

Restuccia D, Mauguiere F. The contribution of median nerve SEPs in the functional assessment of the cervical spinal cord in syringomyelia. A study of 24 patients. Brain. 1991;114(Pt 1B):361–79.

Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine (Phila Pa 1976). 1993;18:737–47.

Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20:122–8

Masur H, Oberwittler C. SEPs and CNS magnetic stimulation in syringomyelia. Muscle Nerve. 1993;16:681–2.

Schieppati M, Ducati A. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb. Electroencephalogr Clin Neurophysiol. 1981;51:363–72.

Bradley, A.P. ve Wilson, W.J., Automated analysis of the auditory brainstem response, IEEE ISSNIP, 541-545, 2004.

Acır, N., Özdamar, Ö., Güzeliş, C., Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection, Engineering Applications of Artificial Intelligence, 19, 209-218, 2006.

Abdala, C., Sininger, Y.S., The development of cochlear frequency resolution in the human auditory system, Ear and Hearing, 17(5), 374-385, 1996.

Pethe, J., Mühler, R. ve von Specht, H., Influence of electrode position on near-threshold recording of auditory evoked brainstem potentials, Scand. Audiol., 27, 77-80, 1998.

Terkildsen, K. ve Österhammel, P., The influence of reference electrode position on recordings of the auditory brainstem response, Ear and Hearing, 2(1), 9-14, 1981.

Kavanagh, K.T., Harker, L.A., Tyler, R.S., Auditory brainstem and middle latency responses. I. Effect of response filtering and waveform identification. II. Threshold responses to a 500-Hz tone pip. Ann. Otol. Rhinol. Laryngol. Suppl., 108, 1-12, 1984.

Elberling, D. ve Don, M., Threshold characteristics of the human auditory brain stem response, J. Acoust. Soc. Am., 81,1, 115-121, 1987.

Junius, D., Dau, T., Influence of cochlear travelling wave and neural adaptation on auditory brainstem responses, Hear. Res., 205, 53-67, 2005.

Hall, H.J., Handbook of Auditory Evoked Responses, Allyn&Bacon, Boston, 1992.

Hort-Legrand C, Emery E. Evoked motor and sensory potentials in syringomyelia. Neurochirurgie. 1999;45(Suppl 1):95–104

Emery E, Hort-Legrand C, Hurth M, Metral S. Correlations between clinical deficits, motor and F. Roser et al. 311 sensory evoked potentials and radiologic aspects of MRI in malformative syringomyelia. 27 Cases. Neurophysiol Clin. 1998;28:56–72

V.M. FernandesdeLima, G.E. Chatrian, E. Lettich, R.C. Canfield, R.C. Miller, M.J. Soso Electrical stimulation of tooth pulp in humans. I. Relationships among physical stimulus intensities, psychological magnitude estimates and cerebral evoked potentials Pain, 14 (1982), pp. 207-232

H. Flor, M. Diers, N. Birbaumer Peripheral and electrocortical responses to painful and non-painful stimulation in chronic pain patients, tension headache patients and healthy controls Neurosci Lett, 361 (2004), pp. 147-150

T. Foulkes, J.N. Wood Mechanisms of cold pain Channels (Austin), 1 (2007), pp. 154-160

Roser F, Ebner FH, Liebsch M, Tatagiba MS, Naros G. The role of intraoperative neuromonitoring in adults with Chiari I malformation. Clin Neurol Neurosurg. 2016;150:27–32.

Fuhr P. Motor evoked potentials. Physiology, indications, safety aspects. Schweiz Rundsch Med Prax. 1992;81:1489–94.

Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–34.

Kaneko K, Kawai S, Taguchi T, Fuchigami Y, Yonemura H, Fujimoto H. Cortical motor neuron excitability during cutaneous silent period. Electroencephalogr Clin Neurophysiol. 1998;109:364–8

Leis AA. Conduction abnormalities detected by silent period testing. Electroencephalogr Clin Neurophysiol. 1994;93:444–9.

Stetkarova I, Kofler M, Leis AA. Cutaneous and mixed nerve silent periods in syringomyelia. Clin Neurophysiol. 2001;112:78–85.

Leis AA. Cutaneous silent period. Muscle Nerve. 1998;21:1243–5.

Uncini A, Kujirai T, Gluck B, Pullman S. Silent period induced by cutaneous stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:344–52

Floeter MK. Cutaneous silent periods. Muscle Nerve. 2003;28:391–401.

Veilleux M, Stevens JC. Syringomyelia: electrophysiologic aspects. Muscle Nerve. 1987;10:449–58.

. Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70–5.

Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65–72.

. Roser F, Ebner FH, Liebsch M, Dietz K, Tatagiba M. A new concept in the electrophysiological evaluation of syringomyelia. J Neurosurg Spine. 2008;8:517–23

Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20:122–8

66.Jeanmonod D, Sindou M, Mauguiere F. Intraoperative spinal cord evoked potentials during cervical and lumbo-sacral microsurgical DREZ-tomy (MDT) for chronic pain and spasticity (preliminary data). Acta Neurochir Suppl (Wien). 1989;46:58–61.

Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine (Phila Pa 1976). 1993;18:737–47.

Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65–72.

Roser F, Ebner FH, Liebsch M, Tatagiba MS, Naros G. The role of intraoperative neuromonitoring in adults with Chiari I malformation. Clin Neurol Neurosurg. 2016;150:27–32

Sala F, Squintani G, Tramontano V, Coppola A, Gerosa M. Intraoperative neurophysiological monitoring during surgery for Chiari malformations. Neurol Sci. 2011;32(Suppl 3):S317–9

Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol. 2012;29:101–8

U. Hoheisel, T. Taguchi, R.D. Treede, S. Mense Nociceptive input from the rat thoracolumbar fascia to lumbar dorsal horn neurones Eur J Pain, 15 (2011), pp. 810-815.

H. Ozawa, M. Inagaki, H. Aikoh, S. Hanaoka, K. Sugai, T. Hashimoto, et al. Somatosensory evoked potentials with a unilateral migration disorder of the cerebrum J Child Neurol, 13 (1998), pp. 211-215.

Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Attenuation of somatosensory evoked potentials during positioning in a patient undergoing suboccipital craniectomy for Chiari I malformation with syringomyelia. J Child Neurol. 2001;16:936–9.

Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70–5

Fuhr P. Motor evoked potentials. Physiology, indications, safety aspects. Schweiz Rundsch Med Prax. 1992;81:1489–94.

Schijman E, Steinbok P. International survey on the management of Chiari I malformation and syringomyelia. Childs Nerv Syst. 2004;20:341–8.

van Kuijk AA, Pasman JW, Geurts AC, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol. 2005;22:10–24

Sala F, Squintani G, Tramontano V, Coppola A, Gerosa M. Intraoperative neurophysiological monitoring during surgery for Chiari malformations. Neurol Sci. 2011;32(Suppl 3):S317–9.

Deinsberger W, Christophis P, Jödicke A, Heesen M, Böker DK. Somatosensory evoked potential monitoring during positioning of the patient for posterior fossa surgery in the semisitting position. Neurosurgery. 1998;43:36–40; discussion 40–42

Durham SR, Fjeld-Olenec K. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in pediatric patients: a meta-analysis. J Neurosurg Pediatr. 2008;2:42–9

Roser F, Ebner FH, Liebsch M, Tatagiba MS, Naros G. The role of intraoperative neuromonitoring in adults with Chiari I malformation. Clin Neurol Neurosurg. 2016;150:27–32.

Danto J, Milhorat T, Hertzberg H, Bolognese P, Conlon J, Korn A. The neurophysiological intraoperative monitoring of Chiari malformation surgery. Riv Med. 2006;12:51–4.

Deinsberger W, Christophis P, 84.Jödicke A, Heesen M, Böker DK. Somatosensory evoked potential monitoring during positioning of the patient for posterior fossa surgery in the semisitting position. Neurosurgery. 1998;43:36–40; discussion 40–42

Sayfalar

97-118

Yayınlanan

2 Mayıs 2025

Lisans

Lisans