Chiari Malformasyonlarının Radyolojik Tarihçesi ve Güncel Volumetrik Yaklaşımlar
Özet
Referanslar
Chiari H. Ueber Veranderungen des Kleinhirnsinfolge von Hydrocephalie des Grosshirns. Deutsche Medizinische Wochenschrift. 1891;17:1172–5. doi: 10.1055/s-0029-1206803
Loukas M, Shayota BJ, Oelhafen K, et al. Associated disorders of Chiari Type I malformations: a review. Neurosurgical Focus. 2011;31(3):E3. doi: 10.3171/2011.6.FOCUS11112
Iskandar BJ, Hedlund GL, Grabb PA, et al. The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. Journal of Neurosurgery. 1998;89:212–216. doi: 10.3171/jns.1998.89.2.0212
Tubbs RS, Iskandar BJ, Bartolucci AA, et al. A critical analysis of the Chiari 1.5 malformation. Journal of Neurosurgery. 2004;101:179–83. doi: 10.3171/ped.2004.101.2.0179
Tubbs RS, Turgut M. Defining the Chiari Malformations: Past and Newer Classifications. In: Tubbs RS, Turgut M, Oakes WJ (eds), The Chiari Malformations. 2nd ed. Springer Nature Switzerland AG, 2020. p. 21-39. doi:10.1007/978-3-030-44862-2
Tubbs RS, Muhleman M, Loukas M, Oakes WJ. A new form of herniation: the Chiari V malformation. Childs Nerv System. 2012;28(2):305-307. doi: 10.1007/s00381-011-1616-5
Erdoğan O, Sarıca C. Chiari Malformasyonları. Türk Nöroşirürji Dergisi. 2021; 31(1):57-63.
Iskandar BJ, Quigley M, Haughton VM. Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. Journal of Neurosurgery: Pediatrics. 2004: 101(2),169-178. doi: 10.3171/ped.2004.101.2.0169
Grassi W, Filippucci E. A brief history of ultrasound in rheumatology: where we were. Clin Exp Rheumatol. 2014;32(1 Suppl 80):S3–6. PMID: 24529080.
Pindrik J, McAllister AS, Jones JY. Imaging in Chiari I Malformation. Neurosurg Clin. 2023; 34(1):67-79. doi: 10.1016/j.nec.2022.08.006.
Tubbs RS, Beckman J, Naftel RP, et al. Institutional experience with 500 cases of surgically treated pediatric Chiari malformation Type I. Journal of Neurosurgery Pediatrics. 2011; 7(3):248-256 doi: 10.3171/2010.12.PEDS10379
Hidalgo JA, Tork CA, Varacallo MA. Arnold-Chiari Malformation. [Updated 2023 Sep 4]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK431076/ [Accessed: 08.03.2025]
Klekamp J. How Should Syringomyelia be Defined and Diagnosed? World Neurosurgery. 2018;111: e729-e745. doi: 10.1016/j.wneu.2017.12.156
Dohrmann GJ, Rubin JM. Use of ultrasound in neurosurgical operations: a preliminary report. Surgical Neurology. 1981;16(5):362–6. doi: 10.1016/0090-3019(81)90279-2
Oldfield EH, Muraszko K, Shawker TW, et al. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils: implications for diagnosis and treatment. Journal of Neurosurgery. 1994; 80(1):3–15. doi: 10.3171/jns.1994.80.1.0003
Yamada K, Sakai K, Akazawa K, et al. MR tractography: a review of its clinical applications. Magnetic Resonance İn Medical Sciences. 2009; 8(4):165–74. doi: 10.2463/mrms.8.165
Voineskos AN, Rajji TK, Lobaugh NJ, et al. Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiology of Aging. 2012;33(1):21–34. doi: 10.1016/j.neurobiolaging.2010.02.009
Kumar M, Rathore RK, Srivastava A, et al. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurgery. 2011;76(1–2):189–94. doi: 10.1016/j.wneu.2011.02.022
Alperin N, Loftus JR, Oliu CJ, et al. MRI measures of posterior cranial fossa morphology and CSF physiology in Chiari malformation type I. Neurosurgery. 2014;75:515–22. doi: 10.1227/NEU.0000000000000507
Taştemur Y, Sabanciogullari V, İsmail S, et al. The relationship of the posterior cranial fossa, the cerebrum, and cerebellum morphometry with tonsiller herniation. Iran Journal Radiology. 2017;14(1):24436. doi: 10.5812/iranjradiol.24436
Vurdem ÜE, Acer N, Ertekin T, et al. Analysis of the volumes of the posterior cranial fossa, cerebellum, and herniated tonsils using the stereological methods in patients with Chiari type I malformation. Scientific World Journal. 2012: 616934. doi: 10.1100/2012/616934
Ertekin T, Degermenci M, Ucar I, et al. The intracranial and posterior cranial fossa volumes and volume fractions in children: a stereological study. International Journal of Morphology. 2017;35:1465–72. doi: 10.4067/S0717-95022017000401465
Smith BW, Strahle J, Bapuraj JR, et al. Distribution of Cerebellar Tonsil Position: Implications for Understanding Chiari Malformation. Journal Of Neurosurgery. 2013;119(3):812-819. doi:10.3171/2013.5.jns121825
Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold-Chiari malformation. Journal of Neurological Sciences. 1981;50:29–55. doi: 10.1016/0022-510X(81)90040-X
Acer N, Sahin B, Ekinci N, et al. Relation between intracranial volume and the surface area of the foramen magnum. Journal of Craniofacial Surgery. 2006;17:326–330. doi: 10.1097/00001665-200603000-00020
Milhorat TH, Nishikawa M, Kula RW, et al. Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management. Acta Neurochirurgica. 2010;152:1117–27. doi: 10.1007/s00701-010-0636-3
Lirng JF, Fuh JL, Chen YY, et al. Posterior cranial fossa crowdedness is related to age and sex: a magnetic resonance volumetric study. Acta Radiologica. 2005;46:737–42. doi: 10.1080/02841850500216269
Khalsa SSS, Siu A, Freitas TA, et al. Comparison of posterior fossa volumes and clinical outcomes after decompression of Chiari malformation type I. Journal of Neurosurgery Pediatrics. 2017;19:511–7. doi: 10.3171/2016.11.PEDS16263
Ulutabanca H, Acer N, Küçük A, et al. Chiari type I malformation with high foramen magnum anomaly. Folia Morphologica. 2015;74:402–6. doi: 10.5603/FM.2015.0059
Coupé P, Manjón JV, Fonov V, et al. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage. 2011;54:940–54. doi: 10.1016/j.neuroimage.2010.09.018
Ma J, Ma HT, Li H, et al. A Fast atlas pre-selection procedure for multi-atlas based brain segmentation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015:3053–6. doi: 10.1109/EMBC.2015.7319036.
Manjon JV, Coupé P. volBrain: an online MRI brain volumetry system. Frontiers in Neuroinformatics. 2016;10:1–14. doi: 10.3389/fninf.2016.00030
Fischl B. Freesurfer. Neuroimage. 2012;62(2):774–81. doi: 10.1016/j.neuroimage.2012.01.021
Gaser C, Dahnke R, Thompson P, et al. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigasciece. 2016:13:giae049. doi: 10.1093/gigascience/giae049
Romero JE, Coupé P, Giraud R, et al. CERES: A new cerebellum lobule segmentation method. Neuroimage, 2017;147:916-924. doi: 10.1016/j.neuroimage.2016.11.003
volBrain. Al-Powered Open Access Platform for Brain Image Analysis. [Online] https://www.volBrain.net [Accessed: 08.03.2025]
Giraud R, Ta VT, Papadakis N, et al. An optimized PatchMatch for multi-scale and multi-feature label fusion. NeuroImage. 2016;124:770–82. doi: 10.1016/j.neuroimage.2015.07.076
Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging. 2010;29(6):1310. doi: 10.1109/TMI.2010.2046908.
Tustison NJ, Cook PA, Klein A, et al. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage. 2014;99:166–79. doi: 10.1016/j.neuroimage.2014.05.044
3D Slicer İmage Computing Platform. [Online] https://www.slicer.org/ [Accessed: 09.03.2025]
Han S, Carass A, He Y, et al. Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization. Neuroimage. 2020;218:116819. doi: 10.1016/j.neuroimage.2020.116819
Sörös P, Wölk L, Bantel C, et al. Replicability, Repeatability, and Long-term Reproducibility of Cerebellar Morphometry. The Cerebellum. 2021:20(3):439-453. doi: 10.1007/s12311-020-01227-2.
Sämann PG, Iglesias JE, Gutman B, et al. FreeSurfer-based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts. Human Brain Mapping. 2022:43(1), 207-233. doi: 10.1002/hbm.25326
Ségonne F, Dale AM, Busa E, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004;22(3):1060–75. doi: 10.1016/j.neuroimage.2004.03.032
Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55. doi: 10.1016/S0896-6273(02)00569-X
Manuel Computational Anatomy Toolbox CAT12. [Online] https://neuro-jena.github.io/cat12-help/#atlas [Accessed: 08.03.2025]
El Mendili MM, Petracca M, Podranski K, et al. SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI. Journal of Neuroimaging, 2020:30: 28-39. doi: 10.1111/jon.12672
Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage 2006; 33: 127-38. doi: 10.1016/j.neuroimage.2006.05.056
DSI-Studio: A Tractography Software Tool for MRI Analysis [Online] https://dsi-studio.labsolver.org/ [Accessed: 09.03.2025]
Bagci AM, Lee SH, Nagornaya N, et al. Automated posterior cranial Fossa Volumetry by MRI: applications to Chiari malformation type I. AJNR Am J Neuroradiol. 2013:34(9):1758-1763. PMID: 23493894
Iqbal S, Robert AP, Mathew D. Computed tomographic study of posterior cranial fossa, foramen magnum, and its surgical implications in Chiari malformations. Asian Journal Neurosurgery. 2018;1:428–34. doi: 10.4103/1793-5482.175627
Acer N, Turgut M, Yilmaz S, Güler HS. Measurement o the Volume of th Posterior Cranial Fossa Using MRI, In: Tubbs RS, Turgut M, Oakes WJ (eds), The Chiari Malformations. 2nd ed. Springer Nature Switzerland AG, 2020. p. 21-39. doi: 10.1007/978-3-030-44862-2_26
Hashimoto H, Shimada M, Takemoto O, et al. Comprehensive assessment of supratentorial and infratentorial volumes in infants with myelomeningocele with and without Chiari malformation type II. Neuroradiology. 2024: 1-11 doi: 10.1007/s00234-024-03514-9.