Chiari Malformasyonları Bağlantılı Doku ve Organların Embriyonal Gelişim Süreçleri
Özet
Chiari çok araştırılmış olmakla birlikte, embriyonal gelişim süreçleriyle bu anomaliler arasındaki bağlantılar hakkında az sayıda çalışma bulunmaktadır. Ayrıca Chiari malformasyonlarının gelişimsel süreçlerde hangi moleküler ve sinyal sistemleri ile bağlantılı olduğu ve etkili gen ekspresyonları ve diğer moleküler mekanizmalar hakkında bilgilerimiz sınırlı kalmaktadır. Bu yazımızda Chiarinin gelişmesinde etkili olan embriyonal gelişim kusurlarını ve bu kusurların oluşmasında etkili olan moleküler mekanizmalar ve sinyal sistemleri literatür bilgisi eşliğinde tartışılacaktır.
Although Chiari has been extensively studied, there are few studies on the connections between these anomalies and embryonal developmental processes. In addition, our knowledge about the molecular and signaling systems that Chiari malformations are associated with in developmental processes and the effective gene expressions and other molecular mechanisms remains limited. In this section, embryonal developmental defects that are effective in the development of Chiari and the molecular mechanisms and signaling systems that are effective in the formation of these defects will be discussed with the literature.
Referanslar
Bianchi E, Wright GJ (1 July 2014). "Izumo meets Juno: preventing polyspermy in fertilization". Cell Cycle. 13 (13): 2019–2020. doi:10.4161/cc.29461.
Gould M (2012). Biology of Fertilization V3 : the Fertilization Response Of the Egg. Oxford: Elsevier Science. ISBN 978-0-323-14843-6.
Bruce M Carlson : Human Embryology and Developmental Biology, 7th Edition.P92-116. Elsevier
Bruce M. Carlson Human Embryology and Developmental Biology. 6th Edition. P.92. Elsevier
Schoenwolf GC (2015). Larsen's human embryology (Fifth ed.). Philadelphia, PA: Churchill Livingstone. pp. 35–36. ISBN 978-1-4557-0684-6
Sadler TW (2010). Langman's medical embryology (11th ed.). Philadelphia: Lippincott William & Wilkins. p. 45. ISBN 978-0-7817-9069-7.
Aplin J.D., Ruane P.T.: Embryo-epithelium interactions during implantation at a glance. J Cell Sci 2017; 130: pp. 15-22.
Arias A.M., Nichols J., Schröter C.: A molecular basis for developmental plasticity in early mammalian embryos. Development 2013; 140: pp. 3499-3510.
Dey S.K., et. al.: Molecular cues to implantation. Endocr Rev 2004; 25: pp. 341-373.
Ochoa-Bernal M.A., Fazleabas A.T.: Physiologic events of embryo implantation and decidualization in human and non-human primates. Internat J Mol Sci 2020; 21: pp. 1973.
Diedrich K., et. al.: The role of the endometrium and embryo in human implantation. Hum Reprod Update 2007; 13: pp. 365-377.
Li S., Winuthayanon W.: Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017; 232: pp. R1-R26.
Tantin D.: Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140: pp. 2857-2866
Seshagiri P.B., et. al.: Cellular and molecular regulation of mammalian blastocyst hatching. J Reprod Immunol 2009; 83: pp. 79-84.
Carlson B.M.: Stem cells and cloning: what’s the difference and why the fuss?. Anat Rec (New Anat) 1999; 257: pp. 1-2.
Dard N., et. al.: Morphogenesis of the mammalian blastocyst. Mol Cell Endocrinol 2008; 282: pp. 70-77.
Enders A.C.: Trophoblast differentiation during the transition from trophoblastic plate to lacunar stage of implantation in the rhesus monkey and human. Am J Anat 1989; 186: pp. 85-98.
Shahbvazi M.N.: Mechanisms of human embryo development: from cell fate to tissue shape and back. Development 2020; 147: pp. dev190629.
Bassalert C., Valverde-Estrella L., Chazaud C.: Primitive endoderm differentiation: From specification to epithelialization. Curr Top Devel Biol 2018; 128: pp. 81-104
Enders A.C.: Trophoblastic differentiation during the transition from trophoblastic plate to lacunar stage of implantation in the rhesus monkey and human. Am J Anat 1989; 186: pp. 85-98.
Arkell R.M., Fossat N., Tam P.P.L.: Wnt signalling in mouse gastrulation and anterior development: New players in the pathway and signal output. Curr Opin Genet Dev 2013; 23: pp. 454-460.
Chazaud C., Yamanaka Y.: Lineage specification in the mouse preimplantation embryo. Development 2016; 143: pp. 1063-1074.
Enders A.C., King B.F.: Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am J Anat 1988; 181: pp. 327-340.
Corallo D., Trapani V., Bonaldo P.: The notochord: Structure and functions. Cell Mol Life Sci 2015; 72: pp. 2989-300
Groves A.K., LaBonne C.: Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 2014; 389: pp. 2-12.
Sokol S.Y.: Mechanotransduction during vertebrate neurulation. Curr Top Dev Biol 2016; 117: pp. 359-376.
Colas J.-F., Schoenwolf G.C.: Towards a cellular and molecular understanding of neurulation. Dev Dyn 2001; 221: pp. 117-145.
Ozair M.Z., Kintner C., Brivanlou A.H.: Neural induction and early patterning in vertebrates. WIREs Devel Biol 2013; 2: pp. 479-498.
Nikolopoulou E., et. al.: Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 2017; 144: pp. 552-566.
Yamaguchi Y., Miura M.: How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2013; 70: pp. 3171-3186.
Trainor P.A., Krumlauf R.: Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 2000; 1: pp. 116-124.
Rekler D., Kalcheim C.: From neural crest to definitive roof plate: The dynamic behavior of the dorsal neural tube. Internat J Mol Sci. 2021; 22: ijms22083911
Eom D.S., Amarnath S., Agarwala S.: Apicobasal polarity and neural tube closure. Dev Growth Differ 2013; 55: pp. 164-172.
Ronan O’Rahilly and Fabiola Müller.: The development of the neural crest in the human. J. Anat. (2007) 211, pp335–351
Paul M. Kulesa, Caleb M. Bailey, Jennifer C. Kasemeier-Kulesa, Rebecca McLennan, Cranial neural crest migration: New rules for an old road, Developmental Biology, Volume 344, Issue 2, 2010.
Parker H.J., Krumlauf R.: A Hox gene regulatory network for hindbrain segmentation. Curr Top Devel Biol 2020; 139: pp. 169-203.
Parker H.J., Bronner M.E., Krumlauf R.: The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification. Bioessays 2016; 38: pp. 526-538.
Alexander T., Nolte C., Krumlauf R.: Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2009; 25: pp. 431-456.
Tümpel S., Wiedemann L.M., Krumlauf R.: Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88: pp. 103-137.
Parker H.J., Krumlauf R.: A Hox gene regulatory network for hindbrain segmentation. Curr Top Devel Biol 2020; 139: pp. 169-203.
Parker H.J., Bronner M.E., Krumlauf R.: The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification. Bioessays 2016; 38: pp. 526-538.
Corallo D., Trapani V., Bonaldo P.: The notochord: Structure and functions. Cell Mol Life Sci 2015; 72: pp. 2989-3908.
Brennan J., et. al.: Nodal signalling in the epiblast patterns the early mouse embryo. Nature 2001; 411: pp. 965-969.
Corallo D., Trapani V., Bonaldo P.: The notochord: structure and functions. Cell Mol Life Sci 2015; 72: pp. 2989-3008.
Bachiller, D., Klingensmith, ., Kemp, C. et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661 (2000). https://doi.org/10.1038/35001072.
Ryan M. Anderson, Alison R. Lawrence, Rolf W. Stottmann, Daniel Bachiller, John Klingensmith; Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 1 November 2002; 129 (21): 4975–4987.
Wurst W., Bally-Cuif L.: Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001; 2: pp. 99-108.
Rhinn M., Picker A., Brand M.: Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol. 2006; 16: pp. 5-12.
Rubenstein J.L.R., et. al.: The embryonic vertebrate forebrain: the prosomeric model. Science 1994; 266: pp. 578-580.
Hergquist H.: Studies on the cerebral tube in vertebrates: the neuromeres. Acta Zool 1952; 33: pp. 117-187.
Andoniadou C.L., Martinez-Barbera J.P.: Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell Mol Life Sci 2013; 70: pp. 3739-3752.
Rhinn M., Picker A., Brand M.: Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 2006; 16: pp. 5-12.
Rhinn M., Brand M.: The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 2001; 11: pp. 34-42.
Addison M., Wilkinson D.G.: Segment identity and cell segregation in the vertebrate hindbrain. Curr Top Dev Biol 2016; 117: pp. 581-596.
Henrique D., et. al.: Neuromesodermal progenitors and the making of the spinal cord. Development 2015; 142: pp. 2864-2875.
Rekler D., Kalcheim C.: From neural crest to definitive roof plate: The dynamic behavior of the dorsal neural tube. Internat J Mol Sci. 2021; 22: ijms2208391.
Detrait E.R., et. al.: Human neural tube defects: Developmental biology, epidemiology, and genetics. Neurotoxicol Teratol 2005; 27: pp. 515-524.
Eickholt B.J., et. al.: Rhombomere interactions control segmental differentiation of hindbrain neurons. Mol Cell Neurosci 2001; 18: pp. 141-148.
Ghosh P., Sagerstrom C.G.: Developing roles for Hox proteins in hindbrain gene regulatory networks. Internat J Devel Biol. 2018; 62: pp. 767-774.
Hidalgo-Sánchez M., et. al.: Specification of the meso-isthmo-cerebellar region: The Otx2/Gbx2 boundary. Brain Res Rev. 2005; 49: pp. 134-149.
Liu A., Niswander L.A.: Bone morphogenetic protein signaling and vertebrate nervous system development. Nat Rev Neurosci 2005; 6: pp. 945-954.
Sato T., Joyner A.L., Nakamura H.: How does FGF signaling from the isthmic organizer induce midbrain and cerebellum development?. Dev Growth Differ 2004; 46: pp. 487-494.
Ulloa F., Marti E.: Wnt won the war: Antagonistic role of Wnt over shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 2010; 239: pp. 69-76.
Kaufman B.A.: Neural tube defects. Pediatr Clin North Am. 2004; 51: pp. 389-419.
Mitchell L.E., et. al.: Spina bifida. Lancet 2004; 364: pp. 1885-1895.
Radkowski MA. (translator). Concerning alterations in the cerebellum resulting from cerebral hydrocepha- lus, 1891 by Hans Chiari [original article in German]. Pediatr Neurosci. 1987;13(1):3–8.
Koehler PJ, Greenblatt SH. The Chiari malforma- tion. In: Koehler PJ, Bruyn GW, Pearce JMS, editors. Neurological eponyms.
Stein SC, Schut L. Hydrocephalus in myelomeningo- cele. Childs Brain. 1979;5(4):413–9.
Caviness VS. The Chiari malformations of the pos- terior fossa and their relation to hydrocephalus. Dev Med Child Neurol. 1976;18(1):1
Williams H. A unifying hypothesis for hydrocepha- lus, Chiari malformation, syringomyelia, anencephaly and spina bi da. Cerebrospinal Fluid Res. 2008;5:7.
Gardner WJ, Abdullah AF, McCormack LJ. The varying expressions of embryonal atresia of the fourth ventricle in adults: Arnold-Chiari malforma- tion, Dandy-Walker syndrome, arachnoid cyst of the cerebellum, and syringomyelia. J Neurosurg. 1957;14(6):591–605.
Pollay M. The function and structure of the cerebro- spinal uid out ow system. Cerebrospinal Fluid Res. 2010;7:9.
Duband JL, Monier F, Delannet M, Newgreen D (1995) Epitheliummesenchyme transition during neural cell development. Acta Anat (Basel) 154:63–78
His W (1868) Untersuchungen über die erste Anlage des Wirbelthierleibes. Die erste Entwickelung des Hünchens im Ei. Vogel, Leipzig.
Vermeij-Keers C (1990) Craniofacial embryology and morphogenesis: normal and abnormal. In: Stricker M, van der Meulen JC, Raphael B, Mazzola R, Tolhurst DE (eds) Craniofacial malformations. Churchill-Livingstone, Edinburgh, pp 27–60.
Sulik KK (1996) Craniofacial development. In: Turvey TA, Vig KWL, Fonseca RJ (eds) Facial clefts and synostosis – principles and management. Saunders, Philadelphia, pp 3–27.
LaBonne C, Bronner-Fraser M (1999) Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81–112.
78. Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold – Chiari malforma- tion. J Neurol Sci. 1981;50(1):29–55.