Antibiyotik Direnci
Özet
Enfeksiyonlar, gelişmekte olan dünyada başlıca ölüm nedenlerinden biridir. Bu, temel olarak yeni enfeksiyon ajanlarının ortaya çıkması ve daha spesifik olarak antimikrobiyal direncin ortaya çıkmasından kaynaklanmaktadır. Zamanla bakteriler daha akıllı hale gelmiş ve bununla birlikte klinik uygulamada antibiyotiklerin aşırı ve düşüncesiz kullanımı, bakterilerin antimikrobiyal ajanlara karşı direnç göstermesine neden olmuştur. Antimikrobiyal direnç, mikrobiyal enfeksiyonların tedavisinde büyük bir sorun olarak kabul edilmektedir. Bakteriler tarafından kullanılan çok çeşitli biyokimyasal direnç mekanizmaları bulunmaktadır. Bakterilerin antimikrobiyal ajanların etkisine direnç göstermek için kullandığı moleküler mekanizmaları anlamak, küresel direnç modellerini tanımak, mevcut ilaçların kullanımını iyileştirmek, direnç gelişimine daha az duyarlı yeni ilaçlar tasarlamak ve dirence karşı yeni stratejiler geliştirmek için kritik öneme sahiptir. Antibiyotik direnci mekanizmalarının daha iyi anlaşılması, klinisyenlere farklı durumlarda antibiyotik kullanımı konusunda da yardımcı olacaktır. Bu derleme, yaygın olarak kullanılan antimikrobiyallerde etki mekanizmasını ve direnç gelişimini tartışmaktadır.
In the developing world, infections are a significant cause of mortality. This is mainly due to the emergence of new infectious agents and more specifically the emergence of antimicrobial resistance. Over time, bacteria have become more intelligent and the excessive and reckless use of antibiotics in clinical practice has led to the development of resistance by bacteria to antimicrobial agents. Antimicrobial resistance is considered a major problem in the treatment of microbial infections. There is a wide range of biochemical resistance mechanisms used by bacteria. crobials. It is essential to comprehend the molecular mechanisms that bacteria employ to resist the action of antimicrobial agents in order to comprehend global resistance patterns, enhance the efficacy of existing drugs, design new drugs that are less susceptible to resistance development, and develop new strategies against resistance. Additionally, clinicians will benefit from a more comprehensive understanding of the mechanisms of antibiotic resistance.
Referanslar
Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4(2):185-91. doi:10.4161/viru.22507.
Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian journal of microbiology. 2014;60(3):147-54. doi: 10.1139/cjm-2014-0063
Sengupta S, Chattopadhyay MK, Grossart H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in microbiology. 2013;4:47. doi: 10.3389/fmicb.2013.00047
CDC, 2013. Antibiotics resistance threats in the United States. U.S department of health and human services centers for disease control and prevention. Centers for Disease Control and Prevention, Office of Infectious Disease Antibiotic resistance threats in the United States, 2013. Apr, 2013. Available at: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/ar-threats-2013-508.pdf
Spellberg B, Gilbert DN. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clinical infectious diseases. 2014;59(suppl_2):S71-S5. doi: 10.1093/cid/ciu392
French GL. The continuing crisis in antibiotic resistance. International journal of antimicrobial agents. 2010;36:S3-S7. doi: 10.1016/S0924-8579(10)70003-0
Nathan C, Cars O. Antibiotic resistance, problems, progress, and prospects. New England Journal of Medicine. 2014;371(19):1761-3. doi: 8. Read AF, Woods RJ. Antibiotic resistance management. Evolution, medicine, and public health. 2014;2014(1):147. doi: 10.1056/NEJMp1408040
Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in public health. 2014;2:145. doi: 10.3389/fpubh.2014.00145
Bennadi D. Self-medication: A current challenge. Journal of basic and clinical pharmacy. 2013;5(1):19. doi: 10.4103/0976-0105.128253
MacGowan AP. Clinical implications of antimicrobial resistance for therapy. Journal of antimicrobial chemotherapy. 2008;62(suppl_2):ii105-ii14. doi: 10.1093/jac/dkn357
Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. Bmj. 2010;340. doi: 10.1136/bmj.c2096
Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chemical reviews. 2005;105(2):425-48. doi: 10.1021/cr030103a
PE R. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect. 1989;8:943-51.
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology. 2017;33(3):300-5. doi: 10.4103/joacp.JOACP_349_15
Džidić S, Šušković J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology. 2008;46(1).
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology. 2018;4(3):482.doi: 10.3934/microbiol.2018.3.482
Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. The lancet. 2006;368(9538):874-85. doi: 10.1016/S0140-6736(06)68853-3
Yoneyama H, Katsumata R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Bioscience, biotechnology, and biochemistry. 2006;70(5):1060-75. doi: 10.1271/bbb.70.1060
Vannuffel P, Cocito C. Mechanism of action of streptogramins and macrolides. Drugs. 1996;51(Suppl 1):20-30. doi: 10.2165/00003495-199600511-00006.
Johnston NJ, Mukhtar TA, Wright GD. Streptogramin antibiotics: mode of action and resistance. Current drug targets. 2002;3(4):335-44. doi: 10.2174/1389450023347678.
Wise R. A review of the mechanisms of action and resistance of antimicrobial agents. Canadian respiratory journal. 1999;6:20A-2A.
Lambert PA. Bacterial resistance to antibiotics: modified target sites. Advanced drug delivery reviews. 2005;57(10):1471-85.doi:10.1016/j.addr.2005.04.003
Bozdogan B, Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance. International journal of antimicrobial agents. 2004;23(2):113-9.doi: 10.1016/j.ijantimicag.2003.11.003
Higgins P, Fluit A, Schmitz F. Fluoroquinolones: structure and target sites. Current drug targets. 2003;4(2):181-90.doi: 10.2174/1389450033346920
Lambert P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the royal society of medicine. 2002;95(Suppl 41):22.
Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nature Reviews Microbiology. 2021;19(2):123-32.
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules. 2020;25(23):5662. doi: 10.3390/molecules25235662
Bhujbalrao R, Anand R. Deciphering determinants in ribosomal methyltransferases that confer antimicrobial resistance. Journal of the American Chemical Society. 2019;141(4):1425-9. doi: 10.1021/jacs.8b10277
Doi Y, Wachino J-i, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infectious disease clinics of North America. 2016;30(2):523. doi: 10.1016/j.idc.2016.02.011
Elias R, Duarte A, Perdigão J. A molecular perspective on colistin and Klebsiella pneumoniae: Mode of action, resistance genetics, and phenotypic susceptibility. Diagnostics. 2021;11(7):1165. doi:10.3390/diagnostics11071165
Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE, Furniss RCD, et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. elife. 2021;10:e65836. doi: 10.7554/eLife.65836
Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A, Rodnina MV, et al. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proceedings of the National Academy of Sciences. 2012;109(6):2102-7. doi: 10.1073/pnas.111727510
Tenover FC. Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine. 2006;119(6):S3-S10. doi: 10.1016/j.amjmed.2006.03.011
Kim Y-H, Cha C-J, Cerniglia CE. Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp. FEMS microbiology letters. 2002;210(2):239-44. doi: 10.1111/j.1574-6968.2002.tb11187.x
Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chemistry & biology. 2015;22(7):888-97.doi: 10.1016/j.chembiol.2015.05.017
Schaenzer AJ, Wright GD. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends in molecular medicine. 2020;26(8):768-82. doi: 10.1016/j.molmed.2020.05.001
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VH, Takebayashi Y, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of molecular biology. 2019;431(18):3472-500.doi: 10.1016/j.jmb.2019.04.002
Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB)–structure and function. Journal of enzyme inhibition and medicinal chemistry. 2017;32(1):917-9. doi: 10.1080/14756366.2017.1344235
Lima LM, da Silva BNM, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry. 2020;208:112829. doi: 10.1016/j.ejmech.2020.112829
Nepal K, Pant ND, Neupane B, Belbase A, Baidhya R, Shrestha RK, et al. Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu. Annals of clinical microbiology and antimicrobials. 2017;16:1-7. doi: 10.1186/s12941-017-0236-7
World Health Organization. WHO Publishes List of Bacteria for which New Antibiotics are Urgently Needed. World Health Organization https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded (2017).
Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clinical microbiology reviews. 2007;20(3):440-58. doi: 10.1128/cmr.00001-07
Yoon E-J, Choi YJ, Park SH, Shin JH, Park SG, Choi JR, et al. A novel KPC variant KPC-55 in Klebsiella pneumoniae ST307 of reinforced meropenem-hydrolyzing activity. Frontiers in Microbiology. 2020;11:561317. doi: 10.3389/fmicb.2020.561317
Mancini S, Keller PM, Greiner M, Bruderer V, Imkamp F. Detection of NDM-19, a novel variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity under zinc-limited conditions, in Switzerland. Diagnostic microbiology and infectious disease. 2019;95(3):114851. doi: 10.1016/j.diagmicrobio.2019.06.003
Tietgen M, Kramer JS, Brunst S, Djahanschiri B, Wohra S, Higgins PG, et al. Identification of the novel class D β-lactamase OXA-679 involved in carbapenem resistance in Acinetobacter calcoaceticus. Journal of Antimicrobial Chemotherapy. 2019;74(6):1494-502. doi: 10.1093/jac/dkz080
Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. Journal of medical microbiology. 2013;62(4):499-513. doi: 10.1099/jmm.0.052555-0
Li X, Fu Y, Shen M, Huang D, Du X, Hu Q, et al. Dissemination of bla NDM-5 gene via an IncX3-type plasmid among non-clonal Escherichia coli in China. Antimicrobial Resistance & Infection Control. 2018;7:1-9. doi: 10.1186/s13756-018-0349-6
Pillonetto M, Arend L, Vespero EC, Pelisson M, Chagas TPG, Carvalho-Assef APDA, et al. First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil. Antimicrobial agents and chemotherapy. 2014;58(12):7592-4. doi: 10.1128/aac.03444-14
Principe L, Mauri C, Conte V, Pini B, Giani T, Rossolini GM, et al. First report of NDM-1-producing Klebsiella pneumoniae imported from Africa to Italy: evidence of the need for continuous surveillance. Journal of global antimicrobial resistance. 2017;8:23-7. doi: 10.1016/j.jgar.2016.10.004
Fang LX, Chen C, Cui CY, Li XP, Zhang Y, Liao XP, et al. Emerging high‐level tigecycline resistance: novel tetracycline destructases spread via the mobile Tet (X). Bioessays. 2020;42(8):2000014. doi: 10.1002/bies.202000014
Gasparrini AJ, Markley JL, Kumar H, Wang B, Fang L, Irum S, et al. Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Communications biology. 2020;3(1):241. doi: 10.1038/s42003-020-0966-5
Szychowski J, Kondo J, Zahr O, Auclair K, Westhof E, Hanessian S, et al. Inhibition of aminoglycoside-deactivating enzymes APH (3′)-IIIa and AAC (6′)-Ii by amphiphilic paromomycin O2 ″-ether analogues. ChemMedChem. 2011;6(11):1961. doi: 10.1002/cmdc.201100346
Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug resistance updates. 2010;13(6):151-71. doi: 10.1016/j.drup.2010.08.003
Bordeleau E, Stogios PJ, Evdokimova E, Koteva K, Savchenko A, Wright GD. ApmA is a unique aminoglycoside antibiotic acetyltransferase that inactivates apramycin. MBio. 2021;12(1). doi: 10.1128/mbio.02705-20
Feßler AT, Wang Y, Wu C, Schwarz S. Mobile lincosamide resistance genes in staphylococci. Plasmid. 2018;99:22-31. doi: 10.1016/j.plasmid.2018.06.002
Zhu X-Q, Wang X-M, Li H, Shang Y-H, Pan Y-S, Wu C-M, et al. Novel lnu (G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn 6260 from Enterococcus faecalis E531. Journal of Antimicrobial Chemotherapy. 2017;72(4):993-7. doi: 10.1093/jac/dkw549
Golkar T, Zieliński M, Berghuis AM. Look and outlook on enzyme-mediated macrolide resistance. Frontiers in microbiology. 2018;9:1942. doi: 10.3389/fmicb.2018.01942
Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Frontiers in microbiology. 2018;9:2179. doi: 10.3389/fmicb.2018.02179
Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. Journal of Antimicrobial Chemotherapy. 2017;72(2):376-84. doi: 10.1093/jac/dkw466
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens. 2016:481-511. doi: 10.1128/9781555819286.ch17
Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science progress. 2002;85(1):57-72. doi: 10.3184/003685002783238870
Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of clinical investigation. 2014;124(7):2836-40. doi: 10.1172/JCI68834
Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends in microbiology. 1996;4(10):401-7.
Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert review of anti-infective therapy. 2014;12(10):1221-36. doi: 10.1586/14787210.2014.956092
Papp-Wallace KM, Docquier J-D, Kerff F, Power P. structural and biochemical aspects of the interaction of β-lactamases with state-of-the-art inhibitors. Frontiers Media SA; 2022:849324. doi: 10.3389/fmicb.2022.849324
Boehr DD, Draker K-a, Koteva K, Bains M, Hancock RE, Wright GD. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chemistry & biology. 2003;10(2):189-96. doi: 10.1016/S1074-5521(03)00026-7