Farmasötik Preparat Analizlerinde Kullanılan Bazı Ekstraksiyon Yöntemleri
Özet
İlaçlar, günümüzde insan sağlığının korunmasında ve hastalıkların önlenmesinde oldukça önemli farmasötik preparatlardır. İlaçların sayısındaki artış ve sektördeki gelişmeler analizlerini önemli kılmaktadır. Genelde farmasötik preparat analiz süreci dört aşamadan oluşmaktadır. Bunlar; örnek elde etme, örneği analize hazırlama, analiz ve sonuçların kaydedilmesi şeklindedir. Analiz öncesi en önemli basamak şüphesiz ki analitin bulunduğu matristen ayırımını içeren ekstraksiyon basamağıdır. Analitin bulunduğu matris çok karmaşık olabilir ve analit eser miktarda olabilir. Bu yüzden ekstraksiyon basamağı uygulanacak analitik yöntemin doğruluğunu ve hassaslığını kısmen belirleyen kritik bir adımdır. Çevreci ve akıllı analiz yöntemlerine artan ilgiyle birlikte minyatürleştirilmiş, düşük maliyetli ve yüksek verimli numune hazırlama teknikleri ortaya çıkmıştır. Bu yöntemlerden bazıları; katı faz ekstraksiyon, katı faz mikroekstraksiyon, elektromembran ekstraksiyon, ultrason destekli ekstraksiyon, karıştırma çubuğu sorbtif ekstraksiyon, tek damla sıvı faz mikroekstraksiyon ve manyetik katı faz ekstraksiyon yöntemleridir. Yöntemlerin seçimi yapılırken hedef analitin veya bulunduğu matrisin hangi fazda olduğu önemlidir. Katı faz mikroekstraksiyon yönteminde sulu fazdaki preparatlar için özel tertibatlı şırınga sistemi kullanılmaktadır. Karıştırma çubuğu sorbtif ekstraksiyon yöntemi ise katı faz mikroekstraksiyon yönteminden farklı olarak daha fazla adsorban yüzeye sahip bir yöntemdir. Ultrason destekli ekstraksiyon yöntemi katı fazdaki preparatların ekstraksiyonunda kullanılmaktadır. Tek damla sıvı faz mikroekstraksiyon yöntemi analitin organik akseptör faza alınarak analizinin yapılabildiği bir yöntemdir. Nano malzemelerin kullanıldığı manyetik katı faz ekstraksiyon yönteminde manyetik adsorbanlar geri kazanılıp yeniden kullanılabilmektedir. Elektromembran ekstraksiyon yöntemi ise elektrik alanı kullanılarak kısa sürede kütle transferi sağlayan bir yöntemdir. Yeşil kimya uygulamaları ve teknolojik gelişmeler dikkate alındığında tek damla sıvı faz mikroekstraksiyon ve elektromembran ekstraksiyon yöntemlerinin kullanımlarının daha da önem kazanacağı öngörülmektedir.
Nowadays, drugs are crucial pharmaceutical preparations for preserving human health and averting illnesses. The study of these preparations is crucial due to the rise in the number of drugs and advancements in the industry. In general, the pharmaceutical preparation analysis process consists of four stages. These include collecting the sample, preparing, doing the analysis, and documenting the results. The most important step before analysis is the extraction step, which involves separating the analyte from the matrix. The analyte may be present in small amounts and the matrix in which it is found may be extremely complex. The step of extraction is crucial since it influences the sensitivity and accuracy of the analytical technique that will be used. Miniaturized, inexpensive, and high-yield sample preparation procedures have arisen in response to growing interest in intelligent and ecologically friendly analysis methods. These techniques include stir bar sorbtive extraction, single drop liquid phase microextraction, solid phase extraction, solid phase microextraction, electromembrane extraction, ultrasound-assisted extraction, and magnetic solid phase extraction techniques. Which phase the target analyte or matrix is in is crucial when selecting the procedures. In solid phase microextraction, a specialized syringe mechanism is employed. The stir bar sorptive extraction method is a method with more adsorbent surface than the solid phase microextraction method. Solid phase preparations are extracted using the ultrasound-assisted extraction technique. The analyte is delivered straight to the analysis equipment after being placed in the organic acceptor phase using the single drop microextraction technique. Magnetic adsorbents can be recovered and repurposed in the magnetic solid phase extraction process that uses nanoparticles. With the use of an electric field, the electromembrane extraction process transfers mass quickly. Electromembrane extraction and single drop liquid phase microextraction techniques are expected to gain importance due to technology advancements and green chemistry applications.
Referanslar
Porter R and Crosby AW, The greatest benefit to mankind: A medical history of humanity from antiquity to the present. Nature; 1998; 391(6664): p. 241-241. doi: 10.2307/2808160
Wilkinson JL, Boxall AB, Kolpin DW, et al., Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences; 2022; 119(8): p. e2113947119. doi: 10.1073/pnas.2113947119
Hasheminasab KS and Fakhari AR, Development and application of carbon nanotubes assisted electromembrane extraction (CNTs/EME) for the determination of buprenorphine as a model of basic drugs from urine samples. Analytica chimica acta; 2013; 767: p. 75-80. doi: 10.1016/j.aca.2012.12.046
Gao H, Chen M, Gao H, et al., Determination of ractopamine residue in animal derived foods using electromembrane extraction followed by liquid chromatography tandem mass spectrometry. Journal of Chromatography A; 2022; 1675: p. 463179. doi: 10.1016/j.chroma.2022.463179
Yang X, Zhang S, Ju M, et al., Preparation and modification of biochar materials and their application in soil remediation. Applied Sciences; 2019; 9(7): p. 1365. doi: 10.3390/app9071365
Sun X, Wang M, Peng J, et al., Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta; 2019; 196: p. 47-53. doi: 10.1016/j.talanta.2018.12.017
Mejías C, Martín J, Santos JL, et al., Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment. Trends in Environmental Analytical Chemistry; 2021; 30: p. e00125. doi: 10.1016/j.teac.2021.e00125
Wright MT and Belitz K, Status and understanding of groundwater quality in the San Diego Drainages hydrogeologic province, 2004: California GAMA Priority Basin Project. 2011, US Geological Survey.
Kim KY, Ekpe OD, Lee H-J, et al., Perfluoroalkyl substances and pharmaceuticals removal in full-scale drinking water treatment plants. Journal of Hazardous Materials; 2020; 400: p. 123235. doi: 10.1016/j.jhazmat.2020.123235
Maghsoudi M, Nojavan S, and Hatami E, Development of electrically assisted solvent bar microextraction followed by high performance liquid chromatography for the extraction and quantification of basic drugs in biological samples. Journal of Chromatography A; 2021; 1654: p. 462447. doi: 10.1016/j.chroma.2021.462447
Šlampová A and Kubáň P, Micro-electromembrane extraction through volatile free liquid membrane for the determination of β-lactam antibiotics in biological and environmental samples. Talanta; 2023; 252: p. 123831. doi: 10.1016/j.talanta.2022.123831
Roman‐Hidalgo C, Santigosa‐Murillo E, Ramos‐Payán M, et al., On‐chip electromembrane extraction of acidic drugs. Electrophoresis; 2019; 40(18-19): p. 2514-2521. doi: 10.1002/elps.201900024
Čop KT, Pavlović DM, Židanić D, et al., Comparison and application of the extraction methods for the determination of pharmaceuticals in water and sediment samples. Microchemical journal; 2024; 205: p. 111283. doi: 10.1016/j.microc.2024.111283
Kole PL, Millership J, and McElnay JC, Stir bar sorptive extraction of diclofenac from liquid formulations: a proof of concept study. Journal of pharmaceutical and biomedical analysis; 2011; 54(4): p. 701-710. doi: 10.1016/j.jpba.2010.10.025
Hennion M-C, Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. Journal of chromatography A; 1999; 856(1-2): p. 3-54. doi: 10.1016/S0021-9673(99)00832-8
Vas G and Vekey K, Solid‐phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of mass spectrometry; 2004; 39(3): p. 233-254. doi: 10.1002/jms.606
Arthur CL and Pawliszyn J, Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical chemistry; 1990; 62(19): p. 2145-2148. doi: 10.1021/ac00218a019
Zheng J, Kuang Y, Zhou S, et al., Latest improvements and expanding applications of solid-phase microextraction. Analytical Chemistry; 2023; 95(1): p. 218-237. doi: 10.1021/acs.analchem.2c03246
Dietz C, Sanz J, and Cámara C, Recent developments in solid-phase microextraction coatings and related techniques. Journal of Chromatography A; 2006; 1103(2): p. 183-192. doi: 10.1016/j.chroma.2005.11.041
Stratulat A, Sousa ÉM, Calisto V, et al., Solid phase extraction using biomass-based sorbents for the quantification of pharmaceuticals in aquatic environments. Microchemical Journal; 2023; 188: p. 108465. doi: 10.1016/j.microc.2023.108465
Zeng J, Zou J, Song X, et al., A new strategy for basic drug extraction in aqueous medium using electrochemically enhanced solid-phase microextraction. Journal of Chromatography A; 2011; 1218(2): p. 191-196. doi: 10.1016/j.chroma.2010.11.020
Onaç C. (2017). Polimer içerikli membranlar ile bazı metal katyonlarının yük taşıyıcılı ekstraksiyonu. (Tez No: 464998). Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli.
Aslan M. Membran teknolojileri. TC Çevre ve Şehircilik Bakanlığı. 2016.
Kırdı İ. (2012). Farklı metotlar kullanarak calix [4] aren ile membran hazırlanması ve Cr (VI)'nın atık sulardan uzaklaştırılması. (Tez No: 315891). Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
Balchen M, Gjelstad A, Rasmussen KE, et al., Electrokinetic migration of acidic drugs across a supported liquid membrane. Journal of Chromatography A; 2007; 1152(1-2): p. 220-225. doi: 10.1016/j.chroma.2006.10.096
Martins RO, de Araújo GL, Simas RC, et al., Electromembrane extraction (EME): Fundamentals and applications. Talanta Open; 2023; 7: p. 100200. doi: 10.1016/j.talo.2023.100200
Middelthon‐Bruer TM, Gjelstad A, Rasmussen KE, et al., Parameters affecting electro membrane extraction of basic drugs. Journal of separation science; 2008; 31(4): p. 753-759. doi: 10.1002/jssc.200700502
Asadi S, Tabani H, and Nojavan S, Application of polyacrylamide gel as a new membrane in electromembrane extraction for the quantification of basic drugs in breast milk and wastewater samples. Journal of pharmaceutical and biomedical analysis; 2018; 151: p. 178-185. doi: 10.1016/j.jpba.2018.01.011
Jiang H-L, Li N, Cui L, et al., Recent application of magnetic solid phase extraction for food safety analysis. TrAC Trends in Analytical Chemistry; 2019; 120: p. 115632. doi: 10.1016/j.trac.2019.115632
Herrero-Latorre C, Barciela-García J, García-Martín S, et al., Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Analytica Chimica Acta; 2015; 892: p. 10-26. doi: 10.1016/j.aca.2015.07.046
Faraji M, Shirani M, and Rashidi-Nodeh H, The recent advances in magnetic sorbents and their applications. TrAC Trends in Analytical Chemistry; 2021; 141: p. 116302. doi: 10.1016/j.trac.2021.116302
Vállez-Gomis V, Grau J, Benedé JL, et al., Magnetic sorbents: Synthetic pathways and application in dispersive (micro) extraction techniques for bioanalysis. TrAC Trends in Analytical Chemistry; 2024; 171: p. 117486. doi: 10.1016/j.trac.2023.117486
Feng J, Zhou P, Qin C, et al., Magnetic solid-phase extraction-based surface-enhanced Raman spectroscopy for label-free therapeutic drug monitoring of carbamazepine and clozapine in human serum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 2024; 310: p. 123924. doi: 10.1016/j.saa.2024.123924
Zhang X, Shen J, Wei Y, et al., Preparation of titanium (IV) immobilized core-shell magnetic covalent organic framework nanospheres for highly selective enrichment of nucleotides from human serum. Separation and Purification Technology; 2023; 324: p. 124589. doi: 10.1016/j.seppur.2023.124589
Keçili R, Ghorbani-Bidkorbeh F, Dolak I, et al., Functionalized magnetic nanoparticles as powerful sorbents and stationary phases for the extraction and chromatographic applications. TrAC Trends in Analytical Chemistry; 2021; 143: p. 116380. doi: 10.1016/j.trac.2021.116380
Hou J, Hu C, Li H, et al., Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis; 2024: p. 116543. doi: 10.1016/j.jpba.2024.116543
Saha S, Singh AK, Keshari AK, et al. Modern extraction techniques for drugs and medicinal agents. In: (eds.). Ingredients extraction by physicochemical methods in food. Elsevier; 2018. p. 65-106.
de Sousa DNR, Grosseli GM, Mozeto AA, et al., Ultrasound‐assisted extraction method for the simultaneous determination of emerging contaminants in freshwater sediments. Journal of Separation Science; 2015; 38(19): p. 3454-3460. doi: 10.1002/jssc.201500644
Pérez-Lemus N, López-Serna R, Pérez-Elvira SI, et al., Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Analytica chimica acta; 2019; 1083: p. 19-40. doi: 10.1016/j.aca.2019.06.044
Gago-Ferrero P, Borova V, Dasenaki ME, et al., Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography–tandem mass spectrometry. Analytical and bioanalytical chemistry; 2015; 407(15): p. 4287-4297. doi: 10.1007/s00216-015-8540-6
Baltussen E, Cramers C, and Sandra P, Sorptive sample preparation–a review. Analytical and bioanalytical chemistry; 2002; 373(1): p. 3-22. doi: 10.1007/s00216-002-1266-2
Pavlović DM, Babić S, Horvat AJ, et al., Sample preparation in analysis of pharmaceuticals. TrAC Trends in Analytical Chemistry; 2007; 26(11): p. 1062-1075. doi: 10.1016/j.trac.2007.09.010
Dıez J, Domı́nguez C, Guillén DA, et al., Optimisation of stir bar sorptive extraction for the analysis of volatile phenols in wines. Journal of Chromatography A; 2004; 1025(2): p. 263-267. doi: 10.1016/j.chroma.2003.10.073
Olariu R-I, Vione D, Grinberg N, et al., Sample preparation for trace analysis by chromatographic methods. Journal of Liquid Chromatography & Related Technologies; 2010; 33(9-12): p. 1174-1207. doi: 10.1080/10826076.2010.484371
Kassem MG, Stir bar sorptive extraction for central nervous system drugs from biological fluids. Arabian Journal of Chemistry; 2011; 4(1): p. 25-35. doi: 10.1016/j.arabjc.2010.06.011
Bazhdanzadeh S, Talebpour Z, Adib N, et al., A simple and reliable stir bar sorptive extraction‐liquid chromatography procedure for the determination of chlorpromazine and trifluoperazine in human serum using experimental design methodology. Journal of separation science; 2011; 34(1): p. 90-97. doi: 10.1002/jssc.201000649