Yoğun Bakımda Plevral Efüzyon ve Ultrasonografi
Özet
Yoğun Bakımda Plevral Efüzyon ve Ultrasonografi
Pleural efüzyon, plevral boşlukta normalden fazla sıvı birikimi olarak tanımlanır ve yoğun bakım hastalarında sık görülen, morbidite ve mortaliteyi artıran bir durumdur. Normalde parietal plevra aracılığıyla üretilen ve lenfatik sistemle emilen plevral sıvı, hidrostatik ve onkotik basınç dengesiyle korunur. Ancak, inflamasyon, konjestif kalp yetmezliği, mekanik ventilasyon, infeksiyonlar ve iatrojenik müdahaleler gibi etkenler bu dengeyi bozarak sıvı birikimine neden olur.
Tanı sürecinde akciğer grafisi, bilgisayarlı tomografi (BT) ve ultrasonografi kullanılmaktadır. Akciğer grafisi, yüksek hacimli efüzyonlarda etkili olsa da düşük hacimli durumları tespit etmede yetersiz kalmaktadır. Ultrasonografi ise yüksek duyarlılık ve özgüllükle küçük miktarlardaki sıvıyı belirleyebilmekte, sıvının içeriği ve hacmi hakkında bilgi sunarak torasentez sırasında komplikasyon riskini azaltmaktadır. Ayrıca, Balık, Eibenberger ve Goecke formülleriyle sıvı hacmi tahmin edilebilmektedir.
Efüzyonun patofizyolojisinde, sıvı filtrasyonu ve lenfatik drenaj arasındaki dengesizlik temel rol oynar. Light kriterleri kullanılarak eksüda ve transüda ayrımı yapılmakta, böylece tedavi stratejileri belirlenmektedir. Erken tanı ve uygun müdahale, yoğun bakım hastalarında hastalığın seyrini olumlu yönde etkileyerek komplikasyonların önlenmesinde kritik öneme sahiptir.
Pleural effusion is defined as an abnormal accumulation of fluid within the pleural cavity and is a condition commonly observed in intensive care unit (ICU) patients, contributing to increased morbidity and mortality. Under normal conditions, pleural fluid—produced by the parietal pleura and absorbed via the lymphatic system—is maintained in equilibrium by the balance of hydrostatic and oncotic pressures. However, factors such as inflammation, congestive heart failure, mechanical ventilation, infections, and iatrogenic interventions can disrupt this balance, resulting in the accumulation of fluid.
The diagnostic process typically involves chest radiography, computed tomography (CT), and ultrasonography. While chest radiography is effective in identifying large-volume effusions, it is less sensitive in detecting low-volume cases. In contrast, ultrasonography demonstrates high sensitivity and specificity in identifying even minimal fluid accumulations, offering valuable insights into both the composition and volume of the effusion and thereby reducing the risk of complications during thoracentesis. Moreover, pleural fluid volume can be estimated using the Balık, Eibenberger, and Goecke formulas.
In the pathophysiology of pleural effusion, the imbalance between fluid filtration and lymphatic drainage is pivotal. Light’s criteria are employed to differentiate between exudative and transudative effusions, thereby guiding therapeutic strategies. Early diagnosis and timely intervention are critical in improving clinical outcomes and mitigating complications in ICU patients.
Referanslar
Miserocchi, G. (1997). Physiology and pathophysiology of pleural fluid turnover. European Respiratory Journal, 10, 219–225.
Fartoukh, M., Azoulay, E., & Galliot, R., et al. (2002). Clinically documented pleural effusions in medical ICU patients: How useful is routine thoracentesis? Chest, 121(1), 178–184.
Boyars, M. (1990). Chest roentgenography for pulmonary evaluation. In Clinical Methods: The History, Physical, and Laboratory Examinations [Internet].
Volpicelli, G., Elbarbary, M., Blaivas, M., et al. (n.d.). International evidence‐based recommendations for point‐of‐care lung ultrasound: Conference reports and expert panel.
Hooper, C., Lee, G., & Maskell, N. (2010). Investigation of a unilateral pleural effusion in adults: British Thoracic Society pleural disease guideline.
Grimberg, A. I., Carlos Shigueoka, D. I., & Nagib Atallah, I. I., et al. (2010). Diagnostic accuracy of sonography for pleural effusion: Systematic review [Acurácia diagnóstica da ultrassonografia nos derrames pleurais: revisão sistemática]. São Paulo Medical Journal, 128.
Hately, W. (1983). Essentials of medical ultrasound: A practical introduction to the principles, techniques, and biomedical applications. Journal of the Royal Society of Medicine, 76(3), 243.
Dietrich, C. F., Hirche, T. O., & Schreiber, D., et al. (2003). Sonographie von Pleura und Lunge. Ultraschall in der Medizin, 24(5), 303–311.
Gervais, D. A., Petersein, A., & Lee, M. J., et al. (1997). US-guided thoracentesis: Requirement for postprocedure chest radiography in patients who receive mechanical ventilation versus patients who breathe spontaneously. Radiology, 204(2), 503–506.
Mattison, L. E., Coppage, L., & Alderman, D. F., et al. (1997). Pleural effusions in the medical ICU: Prevalence, causes, and clinical implications. Chest, 111(4), 1018–1023.
Bateman, M., Alkhatib, A., & John, T., et al. (n.d.). Review of a large clinical series pleural effusion outcomes in intensive care: Analysis of a large clinical database.
Miserocchi, G., & Negrini, D. (1986). Contribution of Starling and lymphatic flows to pleural liquid exchanges in anesthetized rabbits. Journal of Applied Physiology, 61(1), 325–330.
Miserocchi, G., Hamm, H., & Light, R. W. (1997). Physiology and pathophysiology of pleural fluid turnover. In The Pleura (Series) [Edited]. European Respiratory Journal, 10, 219–225.
Walden, A. P., Jones, Q. C., & Matsa, R., et al. (2012). Pleural effusions on the intensive care unit: Hidden morbidity with therapeutic potential.
Wiener-Kronish, J. P., Broaddus, V. C., & Albertine, K. H., et al. (n.d.). Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep.
Heyland, D. K., Cook, D. J., & Griffith, L., et al. (1999). The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. American Journal of Respiratory and Critical Care Medicine, 159.
Light, R. W. (1992). Pleural diseases. Disease-a-Month, 38(5), 266–331.
Remérand, J., Dellamonica, Z., & Mao, F. F., et al. (2010). Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care Medicine, 36, 656–664.
Mayo, P. H., Goltz, H. R., & Tafreshi, M., et al. (2004). Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest, 125(3), 1059–1062.
Soni, N., & Williams, P. (2008). Positive pressure ventilation: What is the real cost? British Journal of Anaesthesia, 101(4), 446–457.
Haider, M., Schad, H., & Mendler, N. (1987). Thoracic duct lymph and PEEP studies in anaesthetized dogs II. Effect of a thoracic duct fistula on the development of a hyponcotic-hydrostatic pulmonary oedema. Intensive Care Medicine, 13.
Walshe, C., Phelan, D., & Bourke, J., et al. (2007). Vascular erosion by central venous catheters used for total parenteral nutrition. Intensive Care Medicine, 33, 534–537.
Miller, K. S., Tomlinson, J. R., & Sahn, S. A. (1985). Pleuropulmonary complications of enteral tube feedings: Two reports, review of the literature, and recommendations. Chest, 88(2), 230–233.
Maskell, N. A., & Butland, J. A. (n.d.). BTS guidelines for the investigation of a unilateral pleural effusion in adults.
Anevlavis, S., Tzouvelekis, A., & Bouros, D. (2012). Mechanisms of pleural involvement in orphan diseases. Respiration, 83, 5–12.
Azoulay, E. (2003). Pleural effusions in the intensive care unit. Current Opinion in Pulmonary Medicine, 9(4), 291–297.
Woodring, J. H. (1984). Recognition of pleural effusion on supine radiographs: How much fluid is required
Ruskin, J. A., Gurney, J. W., Thorsen, M. K., & Goodman, L. R. (1987). Detection of pleural effusions on supine chest radiographs.
Woodring, J. H. (1984). Recognition of pleural effusion on supine radiographs: How much fluid is required?
Wall, B. F., & Hart, D. (2014). Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. British Journal of Radiology, 70(May), 437–439. DOI: 10.1259/bjr.70.833.9227222
Rollandi, G. A., Biscaldi, E., de Rito, M. R., et al. (1998). [Study with thoracic and abdominal spiral CT in intensive care unit patients]. Radiologia Medica, 96(5), 485–491.
Picano, E. (n.d.). Education and debate: Sustainability of medical imaging
McCloud, T. C., & Flower, C. D. R. (1991). Review article: Imaging the pleura: Sonography, CT, and MR imaging.
Lichtenstein, D., Goldstein, I., & Mourgeon, E., et al. (2004). Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology, 100(1), 9–16.
Feller-Kopman, D. (2006). Ultrasound-guided thoracentesis. Chest, 129(6), 1709–1714.
Cardenas-Garcia, J., Mayo, P. H., & Folch, E. (n.d.). Ultrasonographic evaluation of the pleura.
Goffi, A., Kruisselbrink, R., & Volpicelli, G. (n.d.). The sound of air: Point-of-care lung ultrasound in perioperative medicine. Canadian Journal of Anesthesia, 65. DOI: 10.1007/s12630-018-1062-x
Weinberg, B., Diakoumakis, E. E., & Kass, E. G., et al. (n.d.). The air bronchogram: Sonographic demonstration.
Cardenas-Garcia, J., Mayo, P. H., & Folch, E. (2015). Ultrasonographic evaluation of the pleura. PLEURA, 2, 237399751561027.
Balik, M., Plasil, P., & Waldauf, P., et al. (n.d.). Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients.
Eibenberger, K. L., Dock, W. I., & Ammann, M. E., et al. (1994). Quantification of pleural effusions: Sonography versus radiography. Radiology, 191(3), 681–684.
Kocijančič, I., Vidmar, K., & Ivanovi-Herceg, Z. (2003). Chest sonography versus lateral decubitus radiography in the diagnosis of small pleural effusions. Journal of Clinical Ultrasound, 31(2), 69–74.
Roch, A., Bojan, M., & Michelet, P., et al. (2005). Usefulness of ultrasonography in predicting pleural effusions >500 mL in patients receiving mechanical ventilation. Chest, 127(1), 224–232.
Havelock, T., Teoh, R., & Laws, D., et al. (2010). Pleural procedures and thoracic ultrasound: British Thoracic Society pleural disease guideline 2010. Thorax, 65(Suppl 2).
Sales, R., & Onishi, R. (2006). Toracocentese e biópsia pleural. Jornal Brasileiro de Pneumologia, 32(Suppl 4).
McVay, P. A., & Toy, P. T. C. Y. (1991). Lack of increased bleeding after paracentesis and thoracentesis in patients with mild coagulation abnormalities. Transfusion (Paris), 31(2), 164–171.
Ko, J. M., Kim, J., & Park, S. A., et al. (2016). Depth of pleural effusion in thoracentesis: Comparison of lateral, posterolateral and posterior approaches in the supine position. Iranian Journal of Radiology, 13(2).
Wrightson, J. M., & Maskell, N. A. (2011). Thoracic ultrasound for beginners: Utility and training issues for clinicians. British Journal of Hospital Medicine, 72(6), 325–330.
Mayo, P. H., Goltz, H. R., & Tafreshi, M., et al. (2004). Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest, 125(3), 1059–1062.
Hizmetleri, S., Ve, U., Hastanesi, A., Cerrahisi, G., Dalı, A., Doç, B. E., et al. (n.d.). Cumhuriyet Üniversitesi Plevra ve Hastalıkları.
Goligher, E. C., Leis, J. A., & Fowler, R. A., et al. (2011). Utility and safety of draining pleural effusions in mechanically ventilated patients: A systematic review and meta-analysis. Critical Care, 15(1).
Wang, J. S., & Tseng, C. H. (1995). Changes in pulmonary mechanics and gas exchange after thoracentesis on patients with inversion of a hemidiaphragm secondary to large pleural effusion. Chest, 107(6), 1610–1614.
Seneff, M. G., Corwin, R. W., & Gold, L. H., et al. (1986). Complications associated with thoracocentesis. Chest, 90(1), 97–100.
Gordon, C. E., Feller-Kopman, D., & Balk, E. M., et al. (n.d.). Pneumothorax following thoracentesis: A systematic review and meta-analysis.