Arthropodların Patojenlere Karşı Savunma Sistemleri: Temel Mekanizmalardan Moleküler Savunmaya Bütünleşik Yaklaşım

Özet

Referanslar

Matthews KR. Controlling and coordinating development in vector-transmitted parasites. Science. 2011;331(6021):1149-1153. doi:10.1126/science.1198077

Baxter RH, Contet A, Krueger K. Arthropod innate immune systems and vector-borne diseases. Biochemistry. 2017;56(7):907-918. doi:10.1021/acs.biochem.6b00870

Cremer S, Pull CD, Furst MA. Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology. 2018;63(1):105-123. doi:10.1146/annurev-ento-020117-043110

Wilson-Rich N, Spivak M, Fefferman NH, Starks PT. Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology. 2009;54(1):405-423. doi:10.1146/annurev.ento.53.103106.093301

Pull CD, Ugelvig LV, Wiesenhofer F, et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. Elife. 2018;7:e32073. doi:10.7554/eLife.32073

Salvy M, Martin C, Bagneres AG, et al. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology. 2001;122(Pt 2):145-159. doi:10.1017/s0031182001007181

Pusceddu M, Piluzza G, Theodorou P, et al. Resin foraging dynamics in Varroa destructor-infested hives: a case of medication of kin? Insect Sci. 2019;26(2):297-310. doi:10.1111/1744-7917.12515

Behringer DC, Butler MJ, Shields JD. Ecology: avoidance of disease by social lobsters. Nature. 2006;441(7092):421. doi:10.1038/441421a

Kacsoh BZ, Lynch ZR, Mortimer NT, Schlenke TA. Fruit flies medicate offspring after seeing parasites. Science. 2013;339(6122):947-950. doi:10.1126/science.1229625

Evans JD, Aronstein K, Chen YP, et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology. 2006;15(5):645-656. doi:10.1111/j.1365-2583.2006.00682.x

Cremer S, Armitage S. Schmid-Hempel, P. Social immunity. Current Biology. 2007;17:R693-R702.

Stow A, Beattie A. Chemical and genetic defenses against disease in insect societies. Brain, Behavior, and Immunity. 2008;22(7):1009-1013. doi:10.1016/j.bbi.2008.03.008

Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology. 2010;103:S62-S72.

Le Conte Y, Alaux C, Martin JF, et al. Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Molecular Biology. 2011;20(3):399-408. doi:10.1111/j.1365-2583.2011.01074.x

Oxley PR, Spivak M, Oldroyd BP. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Molecular Ecology. 2010;19(7):1452-1461. doi:10.1111/j.1365-294X.2010.04569.x

Swanson JAI, Torto B, Kells SA, et al. Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. Journal of Chemical Ecology. 2009;35(9):1108-1116. doi:10.1007/s10886-009-9683-8

Ugelvig LV, Cremer S. Social prophylaxis: group interaction promotes collective immunity in ant colonies. Current Biology. 2007;17(22):1967-1971. doi:10.1016/j.cub.2007.10.029

Rueppell O, Hayworth MK, Ross N. Altruistic self‐removal of health‐compromised honey bee workers from their hive. Journal of Evolutionary Biology. 2010;23(7):1538-1546. doi: 10.1111/j.1420-9101.2010.02022.x

Adamo SA. The specificity of behavioral fever in the cricket Acheta domesticus. Journal of Parasitology. 1998;84(3):529-533.

Chapman R. The Insects: Structure and Function: Cambridge University Press; 1998.

Moussian B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology. 2010;40(5):363-375. doi:10.1016/j.ibmb.2010.03.003

Parle E, Dirks JH, Taylor D. Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future. Arthropod Structure & Development. 2017;46(1):49-55. doi:10.1016/j.asd.2016.11.008

Salcedo-Porras N, Lowenberger C. The innate immune system of kissing bugs, vectors of chagas disease. Developmental & Comparative Immunology. 2019;98:119-128. doi:10.1016/j.dci.2019.04.007

Wigglesworth VB. The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. Journal of Cell Science. 1933;2(302):269-318.

Willis JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochemistry and Molecular Biology. 2010;40(3):189-204. doi:10.1016/j.ibmb.2010.02.001

Andersen SO. Insect cuticular sclerotization: a review. Insect Biochemistry and Molecular Biology. 2010;40(3):166-178. doi:10.1016/j.ibmb.2009.10.007

Boguś MI, Czygier M, Gołębiowski M, et al. Effects of insect cuticular fatty acids on in vitro growth and pathogenicity of the entomopathogenic fungus Conidiobolus coronatus. Experimental Parasitology. 2010;125(4):400-408. doi: https://doi.org/10.1016/j.exppara.2010.04.001

Lundgren J, Jurat-Fuentes J. The physiology and ecology of host defense against microbial invaders. Vega FE, Kaya HK (Ed). Insect Pathology in. UK: Elsevier; 2012:460-480.

Poulsen M, Bot AN, Boomsma JJ. The effect of metapleural gland secretion on the growth of a mutualistic bacterium on the cuticle of leaf-cutting ants. Naturwissenschaften. 2003;90(9):406-409. doi:10.1007/s00114-003-0450-3

Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT. Active use of the metapleural glands by ants in controlling fungal infection. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1594):1689-1695.

Toledo AV, Alippi AM, de Remes Lenicov AM. Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens. J Insect Sci. 2011;11(1):29. doi:10.1673/031.011.0129

Haider MZ, Knowles BH, Ellar DJ. Specificity of Bacillus thuringiensis var. colmeri insecticidal δ‐endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. European Journal of Biochemistry. 1986;156(3):531-540.

Chouvenc T, Su NY, Robert A. Inhibition of the fungal pathogen in the alimentary tracts of five termite (Isoptera) species. Florida Entomologist. 2010;93(3):467-469. doi:Doi 10.1653/024.093.0327

Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology. 2004;49(1):71-92. doi:10.1146/annurev.ento.49.061802.123416

Lehane MJ. Peritrophic matrix structure and function. Annual Review of Entomology. 1997;42(1):525-550. doi:10.1146/annurev.ento.42.1.525

Plymale R, Grove MJ, Cox-Foster D, et al. Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran larvae. Journal of Insect Physiology. 2008;54(4):737-749. doi:10.1016/j.jinsphys.2008.02.005

Hoover K, Humphries MA, Gendron AR, Slavicek JM. Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertebrate Pathology. 2010;104(2):150-152. doi:10.1016/j.jip.2010.02.008

Mitsuhashi W, Kawakita H, Murakami R, et al. Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane. Journal of Virology. 2007;81(8):4235-4243. doi:10.1128/JVI.02300-06

Brennan CA, Anderson KV. Drosophila: the genetics of innate immune recognition and response. Annual Review of Immunology. 2004;22(1):457-483. doi:10.1146/annurev.immunol.22.012703.104626

Govind S. Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 2008;15(1):29-43. doi:10.1111/j.1744-7917.2008.00185.x

Passarelli AL. Barriers to success: How baculoviruses establish efficient systemic infections. Virology. 2011;411(2):383-392. doi:10.1016/j.virol.2011.01.009

Shia AK, Glittenberg M, Thompson G, et al. Toll-dependent antimicrobial responses in Drosophila larval fat body require Spatzle secreted by haemocytes. Journal of Cell Science. 2009;122(Pt 24):4505-4515. doi:10.1242/jcs.049155

Sun Y, Jiang Y, Wang Y, et al. The Toll signaling pathway in the Chinese oak silkworm, Antheraea pernyi: Innate immune responses to different microorganisms. PloS One. 2016;11(8):e0160200. doi:10.1371/journal.pone.0160200

Yang YT, Lee MR, Lee SJ, et al. Tenebrio molitor Gram‐negative‐binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF‐007. Insect Science. 2018;25(6):969-977. doi: 10.1111/1744-7917.12482

Hoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33-38. doi:10.1038/nature02021

Hanson MA, Hamilton PT, Perlman SJ. Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila. BMC Evolutionary Biology. 2016;16(1):228. doi:10.1186/s12862-016-0805-y

Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology. 2002;32(10):1295-1309. doi 10.1016/S0965-1748(02)00092-9

Schmidt O, Theopold U, Strand M. Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays. 2001;23(4):344-351. doi:10.1002/bies.1049

Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4(7):597-603. doi:10.4161/viru.25906

Satyavathi VV, Minz A, Nagaraju J. Nodulation: an unexplored cellular defense mechanism in insects. Cellular Signalling. 2014;26(8):1753-1763. doi:10.1016/j.cellsig.2014.02.024

Lee WS, Webster JA, Madzokere ET, et al. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasites & Vectors. 2019;12:1-12. doi:165 10.1186/s13071-019-3433-8

Nainu F, Tanaka Y, Shiratsuchi A, Nakanishi Y. Protection of insects against viral infection by apoptosis-dependent phagocytosis. Journal of Immunology. 2015;195(12):5696-5706. doi:10.4049/jimmunol.1500613

Santiago PB, de Araujo CN, Motta FN, et al. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors. 2017;10(1):79. doi:10.1186/s13071-017-2005-z

Tsuzuki S, Matsumoto H, Furihata S, et al. Switching between humoral and cellular immune responses in is guided by the cytokine GBP. Nature Communications. 2014;5(1):4628. doi:https://doi.org/10.1038/ncomms5628

Weng SC, Li HH, Li JC, et al. A thioester-containing protein controls dengue virus infection in through modulating immune response. Frontiers in Immunology. 2021;12:670122. doi: 10.3389/fimmu.2021.670122

Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathogens. 2008;4(7):e1000098. doi:10.1371/journal.ppat.1000098

Stokes BA, Yadav S, Shokal U, et al. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Frontiers in Microbiology. 2015;6:19. doi:10.3389/fmicb.2015.00019

Goic B, Stapleford KA, Frangeul L, et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications. 2016;7(1):12410. doi:10.1038/ncomms12410

Kanost MR, Nardi JB. Innate immune responses of Manduca sexta. Goldsmith MR, Marec F (Ed), Molecular Biology and Genetics of the Lepidoptera in. Boca Raton: CRC Press; 2010. p. 271-291.

Hoffmann JA. Innate immunity of insects. Current Opinion in Immunology. 1995;7(1):4-10. doi:10.1016/0952-7915(95)80022-0

Royet J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Molecular Immunology. 2004;41(11):1063-1075. doi:10.1016/j.molimm.2004.06.009

Strand MR. The insect cellular immune response. Insect Science. 2008;15(1):1-14. doi:10.1111/j.1744-7917.2008.00183.x

Royet J. Drosophila melanogaster innate immunity: an emerging role for peptidoglycan recognition proteins in bacteria detection. Cellular and Molecular Life Sciences.2004;61(5):537-546.doi:10.1007/s00018-003-3243-0

Vilcinskas A. Lepidopterans as model mini-hosts for human pathogens and as a resource for peptide antibiotics. Goldsmith MR, Marec F (Ed), Molecular Biology and Genetics of the Lepidoptera in. Boca Raton: CRC Press; 2010. p.293-306

Christensen BM, Li J, Chen CC, Nappi AJ. Melanization immune responses in mosquito vectors. Trends Parasitol. 2005;21(4):192-199. doi:10.1016/j.pt.2005.02.007

Jiang HB. The biochemical basis of antimicrobial responses in. Insect Science. 2008;15(1):53-66. doi:10.1111/j.1744-7917.2008.00187.x

Takehana A, Yano T, Mita S, et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO Journal. 2004;23(23):4690-4700. doi:10.1038/sj.emboj.7600466

Choe KM, Werner T, Stoven S, et al. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science. 2002;296(5566):359-362. doi:10.1126/science.1070216

Iatsenko I, Kondo S, Mengin-Lecreulx D, Lemaitre B. PGRP-SD, an extracellular pattern-recognition receptor, enhances peptidoglycan-mediated activation of the Drosophila IMD pathway. Immunity. 2016;45(5):1013-1023. doi:10.1016/j.immuni.2016.10.029

Michel T, Reichhart JM, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001;414(6865):756-759. doi:DOI 10.1038/414756a

Monahan A, Kleino A, Silverman N. ReaDAPting the role of PGRP-SD in bacterial sensing and immune activation. Immunity. 2016;45(5):951-953. doi:10.1016/j.immuni.2016.11.002

Gottar M, Gobert V, Michel T, et al. The immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature. 2002;416(6881):640-644. doi:DOI 10.1038/nature734

Ramet M, Manfruelli P, Pearson A, et al. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature. 2002;416(6881):644-648. doi:10.1038/nature735

Takehana A, Katsuyama T, Yano T, et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(21):13705-13710. doi:10.1073/pnas.212301199

Yano T, Mita S, Ohmori H, et al. Autophagic control of Listeria through intracellular innate immune recognition in Drosophila. Nature Immunology. 2008;9(8):908-916. doi:10.1038/ni.1634

Zhu Y, Yu X, Cheng G. Insect c-type lectins in microbial infections. Advances in Experimental Medicine and Biology. 2020;1204:129-140. doi:10.1007/978-981-15-1580-4_5

Blandin S, Levashina EA. Thioester-containing proteins and insect immunity. Molecular Immunology. 2004;40(12):903-908. doi:10.1016/j.molimm.2003.10.010

Shokal U, Eleftherianos I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Frontiers in Immunology. 2017;8:759. doi:10.3389/fimmu.2017.00759

Dostalova A, Rommelaere S, Poidevin M, Lemaitre B. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. BMC Biology. 2017;15(1):79. doi:10.1186/s12915-017-0408-0

Shokal U, Eleftherianos I. Thioester-containing protein-4 regulates the Drosophila immune signaling and function against the pathogen Photorhabdus. Journal of Innate Immunity. 2017;9(1):83-93. doi:10.1159/000450610

Eleftherianos I, Millichap PJ, ffrench-Constant RH, Reynolds SE. RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental & Comparative Immunology. 2006;30(12):1099-1107. doi:10.1016/j.dci.2006.02.008

Carton Y, Poirié M, Nappi AJ. Insect immune resistance to parasitoids. Insect Science. 2008;15(1):67-87. doi:10.1111/j.1744-7917.2008.00188.x

Hong M, Hwang D, Cho S. Hemocyte morphology and cellular immune response in termite (Reticulitermes speratus). Insect Science. 2018;18(2):46. doi:10.1093/jisesa/iey039

Kim SG, Jo YH, Seong JH, Park KB, Noh MY, Cho JH, et al. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor. Insect Biochemistry and Molecular Biology. 2017;89:31-42. doi:10.1016/j.ibmb.2017.08.007

Pandey J, Tiwari R. An overview of insect hemocyte science and its future application in applied and biomedical fields. American Journal of Biochemistry and Molecular Biology, 2012;2:82-105. doi: 10.3923/ajbmb.2012.82.105

Ribeiro C, Brehélin M. Insect haemocytes: what type of cell is that? Journal of Insect Physiology. 2006;52(5):417-429. 10.1016/j.jinsphys.2006.01.005

Șapcaliu A, Rădoi I, Pavel C, et al. Research regarding haemocyte profile from Apis mellifera carpatica bee haemolymph originated in the south of Romania. Lucrări Ştiinłifice Medicină Veterinară. 2009;42(2):393-7.

Jutras I, Desjardins M. Phagocytosis: At the crossroads of innate and adaptive immunity. Annual Review of Cell and Developmental Biology. 2005;21(1):511-527. doi:10.1146/annurev.cellbio.20.010403.102755

Hillyer JF. Insect immunology and hematopoiesis. Developmental & Comparative Immunology. 2016;58:102-118. doi:10.1016/j.dci.2015.12.006

Tokusumi Y, Tokusumi T, Schulz RA. Mechanical stress to larvae stimulates a cellular immune response through the JAK/STAT signaling pathway. Biochemical and Biophysical Research Communications. 2018;502(3):415-421. doi:10.1016/j.bbrc.2018.05.192

Stuart LM, Ezekowitz RA. Phagocytosis and comparative innate immunity: learning on the fly. Nature Reviews: Immunology. 2008;8(2):131-141. doi:10.1038/nri2240

Dubovskiy IM, Kryukova NA, Glupov VV, Ratcliffe NA. Encapsulation and nodulation in insects. Isj-Invertebrate Survival Journal. 2016;13(1):229-246. https://doi.org/10.25431/1824-307X/isj.v13i1.229-246

Jiravanichpaisal P, Lee BL, Soderhall K. Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology. 2006;211(4):213-236. doi:10.1016/j.imbio.2005.10.015

Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology. 2007;35(4):495-516. doi:10.1080/01926230701320337

Terenius O. Anti-parasitic and anti-viral immune responses in insects: PhD Thesis Dep Genet Microbiol Toxicol Stock UnivStock Sweden (2004).p. 68.

Clarke TE, Clem RJ. Insect defenses against virus infection: the role of apoptosis. International Reviews of Immunology. 2003;22(5-6):401-424. doi:10.1080/08830180305215

Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nature Reviews: Cancer. 2002;2(4):277-288. doi:10.1038/nrc776

Moy RH, Cherry S. Antimicrobial autophagy: a conserved innate immune response in Drosophila. Journal of Innate Immunity. 2013;5(5):444-455. doi:10.1159/000350326

Shibutani ST, Saitoh T, Nowag H, et al. Autophagy and autophagy-related proteins in the immune system. Nature Immunology. 2015;16(10):1014-1024. doi:10.1038/ni.3273

Yano T, Kurata S. Intracellular recognition of pathogens and autophagy as an innate immune host defence. Journal of Biochemistry. 2011;150(2):143-149. doi:10.1093/jb/mvr083

Moy RH, Gold B, Molleston JM, et al. Antiviral Autophagy Restricts Rift Valley Fever Virus Infection and Is Conserved from Flies to Mammals. Immunity. 2014;40(1):51-65. doi:10.1016/j.immuni.2013.10.020

Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences ? Virulence. 2018;9(1):1625-1639. doi:10.1080/21505594.2018.1526531

Gilbert LI. Insect molecular biology and biochemistry: Academic Press; 2011.

Nie L, Cai SY, Shao JZ, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Frontiers in Immunology. 2018;9:1523. doi:10.3389/fimmu.2018.01523

Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infection and Immunity. 2002;70(3):1033-1041. doi:10.1128/IAI.70.3.1033-1041.2002

Belvin MP, Anderson KV. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annual Review of Cell and Developmental Biology. 1996;12(1):393-416. doi:10.1146/annurev.cellbio.12.1.393

Imler JL, Zheng L. Biology of Toll receptors: lessons from insects and mammals. Journal of Leukocyte Biology. 2004;75(1):18-26. doi:10.1189/jlb.0403160

Janeway CA. Approaching the asymptote? Evolution and revolution in immunology in. New York: Cold Spring Harbor Laboratory Press;1989.

Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development. 2018;145(9):dev156018. doi:10.1242/dev.156018

Armant MA, Fenton MJ. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biology. 2002;3(8):REVIEWS3011. doi:10.1186/gb-2002-3-8-reviews3011

Kondo Y, Yoda S, Mizoguchi T, et al. Toll ligand Spatzle3 controls melanization in the stripe pattern formation in caterpillars. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(31):8336-8341. doi:10.1073/pnas.1707896114

McLaughlin CN, Perry-Richardson JJ, Coutinho-Budd JC, Broihier HT. Dying neurons utilize innate immune signaling to prime glia for phagocytosis during development. Developmental Cell. 2019;48(4):506-522 e506. doi:10.1016/j.devcel.2018.12.019

Edosa TT, Jo YH, Keshavarz M, et al. Tm Spz6 is essential for regulating the immune response to Escherichia coli and Staphylococcus aureus infection in Tenebrio molitor. Insects. 2020;11(2):105. doi:10.3390/insects11020105

Jo YH, Kim YJ, Park KB, et al. TmCactin plays an important role in Gram-negative and -positive bacterial infection by regulating expression of 7 AMP genes in Tenebrio molitor. Scientific Reports. 2017;7(1):46459. doi:10.1038/srep46459

Keshavarz M, Jo YH, Park KB, et al. Tm DorX2 positively regulates antimicrobial peptides in Tenebrio molitor gut, fat body, and hemocytes in response to bacterial and fungal infection. Scientific Reports. 2019;9(1):16878. doi: 10.1038/s41598-019-53497-4

Alpar L, Bergantinos C, Johnston LA. Spatially restricted regulation of spatzle/toll signaling during cell competition. Developmental Cell. 2018;46(6):706-719 e705. doi:10.1016/j.devcel.2018.08.001

Nonaka S, Kawamura K, Hori A, Salim E, Fukushima K, Nakanishi Y, et al. Characterization of Spz5 as a novel ligand for Toll-1 receptor. Biochemical and Biophysical Research Communications. 2018;506(3):510-515. doi:10.1016/j.bbrc.2018.10.096

Parthier C, Stelter M, Ursel C, et al. Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(17):6281-6286. doi:10.1073/pnas.1320678111

Lewis M, Arnot CJ, Beeston H, et al. Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(51):20461-20466. doi:10.1073/pnas.1317002110

Weber AN, Tauszig-Delamasure S, Hoffmann JA, et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunology. 2003;4(8):794-800. doi: 10.1038/ni955

Park S, Jo YH, Park KB, et al. TmToll-7 Plays a crucial role in innate immune responses against Gram-negative bacteria by regulating 5 AMP genes in Tenebrio molitor. Frontiers in Immunology. 2019;10:310. doi:10.3389/fimmu.2019.00310

Edosa TT, Jo YH, Keshavarz M, et al. Tm Spz4 plays an important role in regulating the production of antimicrobial peptides in response to Escherichia coli and Candida albicans infections. International Journal of Molecular Sciences. 2020;21(5):1878. doi: 10.3390/ijms21051878

Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Developmental & Comparative Immunology. 2014;42(1):25-35. doi:10.1016/j.dci.2013.05.014

Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunological Reviews. 2012;246(1):95-106. doi:10.1111/j.1600-065X.2012.01108.x

Keshavarz M, Jo YH, Edosa TT, Han YS. Tenebrio molitor PGRP-LE plays a critical role in gut antimicrobial peptide production in response to Escherichia coli. Frontiers in Physiology. 2020;11:320. doi:10.3389/fphys.2020.00320

Keshavarz M, Jo YH, Edosa TT, Han YS. Two roles for the Tenebrio molitor Relish in the regulation of antimicrobial peptides and autophagy-related genes in response to Listeria monocytogenes. Insects. 2020;11(3):188. doi:10.3390/insects11030188

Keshavarz M, Jo YH, Patnaik BB, et al. Tm Relish is required for regulating the antimicrobial responses to Escherichia coli and Staphylococcus aureus in Tenebrio molitor. Scientific Reports. 2020;10(1):4258. doi: 10.1038/s41598-020-61157-1

Beckage NE. Insect immunology: Amsterdam, The Netherlands: Academic press; 2011.

Cabral S, de Paula A, Samuels R, et al. Aedes aegypti (Diptera: Culicidae) immune responses with different feeding regimes following infection by the entomopathogenic fungus Metarhizium anisopliae. Insects. 2020;11(2):95. doi:10.3390/insects11020095

Myllymaki H, Ramet M. JAK/STAT pathway in Drosophila immunity. Scandinavian Journal of Immunology. 2014;79(6):377-385. doi:10.1111/sji.12170

Brown S, Hu N, Hombria JC. Novel level of signalling control in the JAK/STAT pathway revealed by in situ visualisation of protein-protein interaction during Drosophila development. Development. 2003;130(14):3077-3084. doi:10.1242/dev.00535

Bina S, Zeidler M. JAK/STAT pathway signalling in Drosophila melanogaster. Landes Bioscience 2009. Books NBK6034.(26/12/2024 tarihinde www.ncbi.nlm.nih.gov adresinden ulaşılmıştır).

Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual Review of Immunology. 2007;25(1):697-743. doi:10.1146/annurev.immunol.25.022106.141615

Levashina EA, Moita LF, Blandin S, et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell. 2001;104(5):709-718. doi:10.1016/s0092-8674(01)00267-7

Zeidler MP, Bach EA, Perrimon N. The roles of the Drosophila JAK/STAT pathway. Oncogene. 2000;19(21):2598-2606. doi:10.1038/sj.onc.1203482

Zanchi C, Johnston PR, Rolff J. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection. Molecular Ecology. 2017;26(19):5334-5343. doi:10.1111/mec.14267

Hanson MA, Lemaitre B. New insights on Drosophila antimicrobial peptide function in host defense and beyond. Current Opinion in Immunology. 2020;62:22-30. doi:10.1016/j.coi.2019.11.008

Wojda I, Cytrynska M, Zdybicka-Barabas A, Kordaczuk J. Insect defense proteins and peptides. Sub-Cellular Biochemistry. 2020;94:81-121. doi:10.1007/978-3-030-41769-7_4

Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Developmental & Comparative Immunology. 1999;23(4-5):329-344. doi:10.1016/s0145-305x(99)00015-4

Coates CJ, Rowley AF, Smith LC, Whitten MMA. Host defences of invertebrates to pathogens and parasites. Invertebrate Pathology. 2022:3-40. doi:10.1093/oso/9780198853756.003.0001

Eleftherianos I, Heryanto C, Bassal T, et al. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology. 2021;164(3):401-432. doi:10.1111/imm.13390

Hillyer JF, Schmidt SL, Christensen BM. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell & Tissue Research. 2003;313(1):117-127. doi:10.1007/s00441-003-0744-y

Poinar GO, Jr., Leutenegger R, Gotz P. Ultrastructure of the formation of a melanotic capsule in Diabrotica (Coleoptera) in response to a parasitic nematode (Mermithidae). Journal of Ultrastructure Research. 1968;25(3):293-306. doi:10.1016/s0022-5320(68)80075-9

Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology. 2008;29(6):263-271. doi:10.1016/j.it.2008.02.009

Chen YY, Chen JC, Lin YC, et al. Endogenous molecules induced by a pathogen-associated molecular pattern (PAMP) elicit innate immunity in shrimp. PloS One. 2014;9(12):e115232. doi:10.1371/journal.pone.0115232

Park SY, Kim CH, Jeong WH, Lee JH, Seo SJ, Han YS, et al. Effects of two hemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella. Developmental & Comparative Immunology. 2005;29(1):43-51. doi:10.1016/j.dci.2004.06.001

Lu A, Zhang Q, Zhang J, et al. Insect prophenoloxidase: the view beyond immunity. Frontiers in Physiology. 2014;5:252. doi:10.3389/fphys.2014.00252

Zhao P, Li J, Wang Y, Jiang H. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochemistry and Molecular Biology. 2007;37(9):952-959. doi:10.1016/j.ibmb.2007.05.001

Cerenius L, Kawabata SI, Lee BL, et al. Proteolytic cascades and their involvement in invertebrate immunity. Trends in Biochemical Sciences. 2010;35(10):575-583. doi:10.1016/j.tibs.2010.04.006

Nappi AJ, Frey F, Carton Y. Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response. Journal of Insect Physiology. 2005;51(2):197-205. doi:10.1016/j.jinsphys.2004.10.013

Ha EM, Oh CT, Bae YS, Lee WJ. A direct role for dual oxidase in Drosophila gut immunity. Science. 2005;310(5749):847-850. doi:10.1126/science.1117311

Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in. Genes & Development. 2009;23(19):2333-2344. doi:10.1101/gad.1827009

Edens WA, Sharling L, Cheng GJ, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91. Journal of Cell Biology. 2001;154(4):879-891. doi:DOI 10.1083/jcb.200103132

Ha E-M, Lee K-A, Seo YY, et al. Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nature Immunology. 2009;10(9):949-957.doi: 10.1038/ni.1765

Hillyer JF, Estévez-Lao TY. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. Developmental and Comparative Immunology. 2010;34(2):141-149. doi:10.1016/j.dci.2009.08.014

Kumar S, Christophides GK, Cantera R, et al. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(24):14139-14144. doi:10.1073/pnas.2036262100

Lanz-Mendoza H, Hernández-Martínez S, Ku-López M, et al. Superoxide anion in hemolymph and midgut is toxic to ookinetes. Journal of Parasitology. 2002;88(4):702-706. doi:10.1645/0022-3395(2002)088[0702:Saiaah]2.0.Co;2

Molina-Cruz A, DeJong RJ, Charles B, et al. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. Journal of Biological Chemistry. 2008;283(6):3217-3223. doi:10.1074/jbc.M705873200

Swevers L, Liu J, Smagghe G. Defense mechanisms against viral infection in Drosophila: RNAi and Non-RNAi. Viruses. 2018;10(5):230. doi:10.3390/v10050230

Yu N, Christiaens O, Liu J, et al. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci. 2013;20(1):4-14. doi:10.1111/j.1744-7917.2012.01534.x

Blair CD, Olson KE. Mosquito immune responses to arbovirus infections. Curr Opin Insect Sci. 2014;3:22-29. doi:10.1016/j.cois.2014.07.005

Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007;130(3):413-426. doi:10.1016/j.cell.2007.07.039

Li M, Zhou Y, Cheng J, et al. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors. 2024;17(1):69. doi:10.1186/s13071-024-06161-4

Deshpande G, Calhoun G, Schedl P. Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes & Development. 2005;19(14):1680-1685. doi:10.1101/gad.1316805

Lu C, Tej SS, Luo S, et al. Elucidation of the small RNA component of the transcriptome. Science. 2005;309(5740):1567-1569. doi:10.1126/science.1114112

Zhang H, Kolb FA, Jaskiewicz L, et al. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57-68. doi:10.1016/j.cell.2004.06.017

Liu QH, Rand TA, Kalidas S, Du FH, Kim HE, Smith DP, et al. R2D2, a bridge between the initiation and effector steps of the RNAi pathway. Science. 2003;301(5641):1921-1925. doi: 10.1126/science.1088710

Li WX, Li H, Lu R, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(5):1350-1355. doi:10.1073/pnas.0308308100

Samuel GH, Wiley MR, Badawi A, et al. Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(48):13863-13868. doi:10.1073/pnas.1600544113

Sanchez-Vargas I, Scott JC, Poole-Smith BK, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathogens. 2009;5(2):e1000299. doi:10.1371/journal.ppat.1000299

Khoo CC, Piper J, Sanchez-Vargas I, et al. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiology. 2010;10:130. doi:10.1186/1471-2180-10-130

Basu S, Aryan A, Overcash JM, et al. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(13):4038-4043. doi:10.1073/pnas.1502370112

Keene KM, Foy BD, Sanchez-Vargas I, et al. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proceedings of the National Academy of Sciences. 2004;101(49):17240-17245. doi: 10.1073/pnas.0406983101

Abraham EG, Pinto SB, Ghosh A, et al. An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(45):16327-16332. doi:10.1073/pnas.0508335102

Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117(1):69-81. doi:10.1016/s0092-8674(04)00261-2

Lucas KJ, Zhao B, Liu S, Raikhel AS. Regulation of physiological processes by microRNAs in insects. Current Opinion in Insect Science. 2015;11:1-7. doi:10.1016/j.cois.2015.06.004

Ku HY, Lin HF. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. National Science Review. 2014;1(2):205-218. doi:10.1093/nsr/nwu014

Shirayama M, Seth M, Lee HC, et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell. 2012;150(1):65-77. doi:10.1016/j.cell.2012.06.015

Miesen P, Girardi E, van Rij RP. Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Research. 2015;43(13):6545-6556. doi:10.1093/nar/gkv590

Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews: Molecular Cell Biology. 2011;12(4):246-258. doi:10.1038/nrm3089

Miesen P, Joosten J, van Rij RP. PIWIs Go Viral: Arbovirus-derived piRNAs in vector mosquitoes. PLoS Pathogens. 2016;12(12):e1006017. doi:10.1371/journal.ppat.1006017

Morazzani EM, Wiley MR, Murreddu MG, et al. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathogens. 2012;8(1):e1002470. doi:10.1371/journal.ppat.1002470

Faulhaber LM, Karp RD. A diphasic immune response against bacteria in the American cockroach. Immunology. 1992;75(2):378-381.

Gomes FM, Silva M, Molina-Cruz A, Barillas-Mury C. Molecular mechanisms of insect immune memory and pathogen transmission. PLoS Pathogens. 2022;18(12):e1010939. doi:10.1371/journal.ppat.1010939

Hartman RS, Karp RD. Short-term immunologic memory in the allograft response of the American cockroach, Periplaneta americana. Transplantation. 1989;47(5):920-922. doi:10.1097/00007890-198905000-00042

Lanz-Mendoza H, Gardu o JC. Insect Innate Immune Memory. Cooper E (ed.) In Advances in Comparative Immunology. Switzerland: Springer; 2018.

Prakash A, Khan I. Why do insects evolve immune priming? A search for crossroads. Developmental & Comparative Immunology. 2022;126:104246. doi: 10.1016/j.dci.2021.104246

Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence. 2020;11(1):238-246. doi:10.1080/21505594.2020.1731137

Vilcinskas A. Mechanisms of transgenerational immune priming in insects. Developmental & Comparative Immunology. 2021;124:104205. doi:10.1016/j.dci.2021.104205

Vargas V, Cime-Castillo J, Lanz-Mendoza H. Immune priming with inactive dengue virus during the larval stage of Aedes aegypti protects against the infection in adult mosquitoes. Scientific Reports. 2020;10(1):6723. doi:10.1038/s41598-020-63402-z

Cabrera K, Hoard DS, Gibson O, et al. Drosophila immune priming Enterococcus faecalis to relies on immune tolerance rather than resistance. PLoS Pathogens. 2023;19(8):e1011567. doi: 10.1371/journal.ppat.1011567

Gelecek

21 Nisan 2025

Lisans

Lisans