Artropodlarda Arakonaklık ve Vektörlük
Özet
Artropodlar, evcil hayvanlar, çiftlik hayvanları ve kümes hayvanlarına doğrudan zarar verebildiği gibi patojenlerin nakli ile dolaylı olarak da zarar verebilmektedirler. Veteriner ve Tıbbi entomoloji kapsamında, artropodların zararlı etkileri kapsamında en önemlisi hastalık etkenlerini nakletmeleridir. Bu bağlamda arthropodlar hastalık etkenlerini ara konak olarak aktarabildikleri gibi vektör olarak ta aktarabilmektedirler. Hastalık etkenlerinin daha çok larval formlarını ya da genç şekillerini vücutlarında taşıyan ve omurgalı konaklara pasif olarak aktarabilen artropodlar arakonak iken, hastalık etkenlerini konaklar (aynı ve/veya farklı konaklar) arasında aktif olarak naklederek bulaştıran artropodlar vektör olarak tanımlanmaktadır. Arakonak olan artropodlara verilebilecek en güzel örnek, Dipylidium caninum türü sestod etkeninin, pireler tarafından son konak olan köpeklere aktarılmasıdır. Vektörlük kavramında ise, enfeksiyon oluşturabilecek etkenin enfekte bir omurgalıdan alınıp, duyarlı başka bir omurgalı konağa aktarılması esastır. Bir artropod vektör aracılığıyla bulaş, genellikle artropodun, omurgalı konağından kan emerken gerçekleşir. Bu etkenlerin nakilleri ve/veya bulaştırılması vektör olarak bilinen artropodlar tarafından biyolojik, mekanik ve mekanik taşıyıcı olarak üç şekilde gerçekleştirilir.
Arthropods have the capacity to directly harm domestic animals, livestock, and poultry, as well as to indirectly transmit pathogens through the process of disease transmission. Within the scope of veterinary and medical entomology, the most significant harmful effect of arthropods is the transmission of disease agents. In this context, arthropods can act as intermediate hosts or vectors for the transfer of disease agents. Intermediate hosts are defined as arthropods that carry disease agents in their bodies and passively transfer them to vertebrate hosts. In contrast, vectors are actively involved in the transmission of disease agents between hosts (same and/or different hosts). A notable example of an arthropod that functions as an intermediate host is the transmission of the cestode agent of the species Dipylidium caninum from fleas to the final host. The process of vectoring entails the transmission of an infectious agent from an infected vertebrate to another vertebrate that is susceptible to infection. This transmission via an arthropod vector typically occurs when the arthropod seizes blood from its vertebrate host.The transmission and/or transmission of these agents is accomplished by arthropods known as vectors in three ways: biological, mechanical, and mechanical carrier.
Referanslar
Reisen WK. Epidemiology of vector-borne diseases. In: Mullen GR, Durden LA, (eds.) Medical and Veterinary Entomology. USA: Elsevier; 2002. p. 15-44.
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology, 2004; 129: 3-14.
Burgdorfer W, Warma MGR. Trans-Stadial and Transovarial Development of Disease Agents in Arthropods. Annual Revıew of Entomology. 1967; 12: 347, 376.
Sonenshine DE. Introduction, In: Sonenshine DE, Mather TN (eds.), Ecological Dynamics of Tick-Borne Zoonoses, UK: Oxford University Press; 1994. p:3-19.
Wall R, Shearer D. Veterinary Entomology. Dordrecht: Springer Science; 1997.
Gray SM, Banerjee N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 1999; 63(1): 128-148.
Edman JD. Arthropod Transmission of Vertebrate Parasites. In: Eldridge BF, Edman JD, (eds.) Medical Entomology. Dordrecht, Netherlands: Kluwer Academic Publishers; 2000. p. 151-163,
Wilson AJ, Morgan ER, Booth M, et al. What is a vector? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2017; 372.
Bolek MG, Gustafson KD, Langford GJ. Parasites in Relation to Other Organisms Hosts, Reservoirs, and Vectors. In: Gardner SL, Gardner SA (eds.) Concepts in Animal Parasitology. Lincoln, Nebraska: Zea Books; 2024. p. 39-46.
Wikel SK. Tick-Host interactions, In: Sonenshine DE, Roe RM. (eds.), Volume II: Biology of ticks, 2nd edn. New York: Oxford University Press; 2014. p. 88-128.
Pérez De León AA, Vannier E, Almazán C et al. Tick-Borne Protozoa. In: Sonenshine DE, Roe RM. (eds.), Volume II: Biology of ticks, 2nd edn. New York: Oxford University Press; 2014. p. 147-179
Macaluso KR, Paddock CD. Tıck-Borne Spotted Fever Group Rıckettsıoses And Rıckettsıa Specıes, In: Sonenshine DE, Roe RM. (eds.), Volume II: Biology of ticks, 2nd edn. New York: Oxford University Press; 2014. p. 211-250.
Radwanska M, Vereecke N, Deleeuw V et al. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Frontiers Immunology. 2018; 9: 2253.
Nouvellet P, Dumonteil E, Gourbière S. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease. PLoS Neglected Tropical Diseases. 2013; 7(11): e2505.
Hinnebusch BJ, Bland DM, Bosio CF et al. Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms PLoS Neglected Tropical Diseases. 2020; 14(5): e0008344.
Rogers ME, Ilg T, Nikolaev AV et al. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature. 2004; 430(6998): 463-467.
Ewing SA, Panciera RJ. American canine hepatozoonosis. Clinical Microbiology Reviews, 2003; 16: 688– 697.