Periodontoloji ve Yapay Zeka
Özet
Yapay zeka (YZ), periodontoloji alanında son yıllarda önemli bir yenilik olarak öne çıkmaktadır. YZ, periodontal hastalıkların erken teşhisi, tedavi planlaması ve hasta takibi gibi süreçlerde etkin bir araç olarak kullanılmaktadır. Görüntü işleme teknikleriyle diş ve diş eti sağlığını analiz etme, X-ray ve 3D tarama gibi verilerden faydalanarak daha doğru tanılar konulabilmektedir. Ayrıca, makine öğrenimi algoritmaları, hastaların klinik geçmişini ve tedavi yanıtlarını değerlendirerek kişiye özel tedavi yaklaşımları geliştirilmesine olanak tanır. YZ tabanlı sistemler, uzmanlık gerektiren kararları hızlandırabilir ve klinik hataları minimize edebilir. Ancak, bu teknolojilerin klinik uygulamalara entegrasyonu, etik ve güvenlik standartlarının oluşturulması gibi bazı zorluklar da içermektedir. Sonuç olarak, yapay zeka, periodontolojide daha hassas ve verimli bir yaklaşım sunmakta, ancak insan faktörünün ve uzmanlığının hala büyük bir rol oynadığı unutulmamalıdır.
Artificial intelligence (AI) has emerged as a significant innovation in the field of periodontology in recent years. AI is being utilized effectively in processes such as early diagnosis of periodontal diseases, treatment planning, and patient monitoring. By employing image processing techniques, it enables the analysis of dental and gingival health, allowing for more accurate diagnoses from data like X-rays and 3D scans. Additionally, machine learning algorithms assess patients' clinical histories and treatment responses, enabling the development of personalized treatment approaches. AI-based systems can expedite expert-level decisions and minimize clinical errors. However, the integration of these technologies into clinical practice involves challenges, including the establishment of ethical guidelines and security standards. In conclusion, while artificial intelligence offers a more precise and efficient approach in periodontology, it is important to remember that human expertise still plays a vital role.
Referanslar
Slots J. Periodontology: past, present, perspectives. Periodontol 2000. 2013;62(1):7–19.
Tonetti MS, Van Dyke TE, working group 1 of the joint EFPAAPw. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. Journal of periodontology 2013; 84:24-9.
Kinane DF, Peterson M, Stathopoulou PG. Environmental and Other Modifying Factors of The Periodontal Disease Periodontol 2000 2006;40:107-119 .
Başer Ü, Doğru H, Özerol B, Et Al. Evaluatıon Of Perıodontal Dısease Awareness By Comparıng Self Reports And Clınıcal Measurements Of Patıents At Istanbul Unıversıty Faculty Of Dentıstry J Istanb Üniv Fac Dent. 2014;48:35-41.
ÖZKAN ŞEN D, UCAN YARKAC F, ÖNCÜ E. Necmettin Erbakan Üniversitesi Diş Hekimliği Fakültesi Periodontoloji Kliniğine Başvuran Hastalarda Periodontal Hastalık Farkındalığı. Selcuk Dental Journal. 2021;8(2):280–7.
Genco RJ, Borgnakke WS. Risk factors for periodontal disease. Periodontology 2000 2013; 62:59-94.
Moor J. Artificial Intelligence Conference : The Next Fifty Years. AI Mag. 2006;27(4):87–91.
Shan T., Tay FR., Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res. 2021;100(3):232– 44.
Aminoshariae A., Kulild J., Nagendrababu V. Artificial Intelligence in Endodontics: Current Applications and Future Directions. J Endod. 2021;47(9):1352–7.
Nguyen TT., Larrivée N., Lee A., Bilaniuk O., Durand R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc. 2021;87(17):1488-2159.
Khanagar SB., Al-ehaideb A., Maganur PC., Vishwanathaiah S., Patil S., Baeshen HA., et al. Developments, application, and performance of artificial intelligence in dentistry – A systematic review. J Dent Sci. 2021;16(1):508–22.
Rajaraman V. JohnMcCarthy—Father of artificial intelligence. Resonance, 2014, 19: 198-207.
AGGARWAL R, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ digital medicine, 2021, 4.1: 65.
Akalın B, Veranyurt Ü. Sağlıkta Dijitalleşme Ve Yapay Zekâ. SDÜ Sağlık Yönetimi Dergisi. 2020;2:128–137.
Khanna SS, Dhaimade PA. Artificial intelligence: transforming dentistry today. Indian J Basic Appl Med Res. 2017;6(3):161-7.
Feeney L, Reynolds P, Eaton K, Harper J. A description of the new technologies used in transforming dental education. British Dental Journal. 2008;204(1):19-28.
Şahin AR, Doğan K, & Sivri S. (2020). Sağlık bilimlerinde yapay zeka. Akademisyen Kitabevi.
Tiwari A, Gupta N, Singla D, Ranjan Swain J, Gupta R, Mehta D, et al. Artificial Intelligence’s Use in the Diagnosis of Mouth Ulcers: A Systematic Review. Cureus. 2023;15(9).
Revilla-León M, Gómez-Polo M, Barmak AB, Inam W, Kan JYK, Kois JC, et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: A systematic review. The Journal of Prosthetic Dentistry, 130(6), 816-824
Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, et al. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Vol. 10, Healthcare (Switzerland). MDPI; 2022.
Strunga M, Urban R, Surovková J, Thurzo A. Artificial intelligence systems assisting in the assessment of the course and retention of orthodontic treatment. Healthcare (Basel). 2023;11(5):683.
Genç C. Yapay Zekâ: Ortodontik Tanı ve Tedavi Planlamasında Güçlü Bir Yardımcı. Turkiye Klinikleri Prosthodontics-Special Topics, 2021, 7.3: 33-39.
Bianchi J, Mendonca G, Gillot M, Oh H, Park J, Turkestani NA, et al. Three-dimensional digital applications for implant space planning in orthodontics: A narrative review. J World Fed Orthod. 2022;11(6):207-15.
Ruppin J, Popovic A, Strauss M, Spüntrup E, Steiner A, Stoll C. Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems. Clin Oral Implants Res. 2008 Jul;19(7):709-16.
Widmann G. Image-guided surgery and medical robotics in the cranial area. Biomed Imaging Interv J. 2007 Jan;3(1):e11.
Zhang W, Li J, Li ZB, Li Z. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep. 2018 Aug 16;8(1):12281.
Halicek, M., Lu, G., Little, J. V., Wang, X., Patel, M., Griffith, C. C., El-Deiry, M. W., Chen, A. Y., & Fei, B. (2017). Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. Journal of Biomedical Optics, 22(6), 060503– 060503.
Poedjiastoeti, W., & Suebnukarn, S. (2018). Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthcare Informatics Research, 24(3), 236–241.
Sukegawa S., Yoshii K., Hara T., Matsuyama T., Yamashita K., Nakano K., et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images. Biomolecules. 2021;11(6), 815.
Kwak Y., Hieu Nguyen V., Hériveaux Y., Belanger P., Park j. Ultrasonic assessment of osseointegration phenomena at the bone-implant interface using convolutional neural network. J Acoust Soc Am. 2021;149(6):4337.
Teh Lee C., Kabir T., Nelson J., Sheng S., Wan Meng H., Van Dyke T., et al. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2022;49(3):260–9.
Adel S., Zaher A., El Harouni N., Venugopal A., Premjani P., Vaid N. Robotic Applications in Orthodontics: Changing the Face of Contemporary Clinical Care. Biomed Res Int. 2021;2021:9954615.
Pauwels R. A brief introduction to concepts and applications of artificial in- telligence in dental imaging. Oral Radiol 2021;37:153-60.
Hung K, Yeung AWK, Tanaka R, Bornstein MM. Current Applications, Opportu- nities, and Limitations of AI for 3D Imaging in Dental Research and Practice. Int J Environ Res Public Health. 2020;17(12):4424.
Katne T, Kanaparthi A, Srikanth Gotoor S, Muppirala S, Devaraju R, Gantala R. Artificial intelligence: demystifying dentistrythe future and beyond. Int J Contemp Med Surg Radiol. 2019;4(4): D6-D9.
Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, Dörfer C, Schwendicke F. Periodontal kemik kaybının radyografik tespiti için derin öğrenme. Bilim Temsilcisi 2019; 9(1):8495.
Davies A, Mannocci F, Mitchell P, Andiappan M, Patel S. Kök dolgulu dişlerde periapikal patozların tek ve paralaks periapikal radyografiler kullanılarak saptanması ve konik ışınlı bilgisayarlı tomografi ile klinik bir çalışmadır. Int Endod J. 2015; 48(6):582-92.
Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019 Mar 7;9(1):3840.
Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019 May;48(4):20180051.
Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020 May;53(5):680-689.
Kılıc MC, Bayrakdar IS, Çelik Ö, Bilgir E, Orhan K, Aydın OB, Kaplan FA, Sağlam H, Odabaş A, Aslan AF, Yılmaz AB. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021 Sep 1;50(6):20200172.
Kim Y., Lee KJ., Sunwoo L., Choi D., Nam CM., Cho J., et al. Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography. Invest Radiol. 2019;54(1):7–15.
TIP VE SAĞLIK BİLİMLERİNDE MULTİDİSİPLİNER BAKIŞ I EDİTÖR Doç. Dr. Ş. Cem YÜCETAŞ [Internet]. 2023. Available from: www.iksadyayinevi.com
Saghiri Ma, Asgar K, Boukani Kk, Lotfi M, Aghili H, Delvarani A, et al. a new approach for locating the minor apical foramen using an artificial neural net- work. ınt endod j. 2012;45:257-65.
Saghiri Ma, Garcia-Godoy F, Gutmann Jl, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. j endod. 2012;38:1130-4.
Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by design- ing a probabilistic neural network: an ex vivo study. Dentomaxillofacial radiol. 2017;46:20160107. d
Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337-43.
Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep- learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial ra- diol. 2019;48:20180218
Vera V., Corchado E., Redondo R., Sedano J., García ÁE. Applying soft computing techniques to optimise a dental milling process. Neurocomputing. 2013;109:94– 104.
Revilla-León M., Gómez-Polo M., Vyas S., Barmak BA., Gallucci GO., Att W., et al. Artificial intelligence models for tooth-supported fixed and removable prosthodontics: A systematic review. The Journal of prosthetic dentistry, 2023, 129.2: 276-292.
Paulus D., Wolf M., Meller S., Niemann H. Three- dimensional computer vision for tooth restoration. Med Image Anal. 1999;3(1):1–19.
Matin I., Hadzistevic M., Vukelic D., Potran M., Brajlih T. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design. Comput Methods Programs Biomed.2017;146:27–35.
Wei J., Peng M., Li Q., Wang Y. Evaluation of a Novel Computer Color Matching System Based on the Improved Back-Propagation Neural Network Model. J Prosthodont. 2018;27(8):775–83.
Zhang B., Dai N., Tian S., Yuan F., Yu Q. The extraction method of tooth preparation margin line based on S-Octree CNN. Int j Numer Method Biomed Eng. 2019;35(10):1–13.
Li H., Lai L., Chen L., Lu C., Cai Q. The prediction in computer color matching of dentistry based on GA+BP neural network. Computational and mathematical methods in medicine, 2015, 2015.1: 816719
Li M., Xu X., Punithakumar K., Le LH., Kaipatur N., Shi B. Automated integration of facial and intra- oral images of anterior teeth. Comput Biol Med. 2020;122:103794.
Humairo CN, Hapsari A, Bramanti ı. The Role of Artificial ıntelligence in Many Dental Specialties. Paper presented at: Bıo Web of Conferences. 2021;41:03005.
Ishikawa-Nagai S, ıshibashi K, Tsuruta o, Weber H-P. Reproducibility of tooth color gradation using a computer color-matching technique applied to ce- ramic restorations. J Prosthet Dent. 2005;93(2):129-37.
Wu Q, Zhao Y-M, Bai S-Z, Li X. Application of robotics in stomatology. ınt J Comput Dent. 2019;22(3):251-60.
Cheng C, Cheng X, Dai N, Jiang X, Sun Y, Li W. Prediction of facial defor- mation after complete denture prosthesis using BP neural network. Comput Biol Med. 2015;66:103-12.
Lerner H, Mouhyi J, Admakin o, Mangano F. Artificial intelligence in fixed im- plant prosthodontics: a retrospective study of 106 implant-supported mono- lithic zirconia crowns inserted in the posterior jaws of 90 patients. BMC oral Health. 2020;20(1):1-16.
Takahashi T, Nozaki K, Gonda T, ıkebe K. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network. J Prosthodont Res. 2021;24;65(1):115-8.
Aydoğdu M. (2022). Adli Odontoloji ve Yapay Zeka. SAĞLIK & BİLİM 2022: Odontoloji-II, 9.
Thurzo A, Kosnáčová HS, Kurilová V, Kosmeľ S, Beňuš R, Moravanský N, Kováč P, Kuracinová KM, Palkovič M, Varga I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare (Basel). 2021 Nov 12;9(11):1545.
Mohammad N, Ahmad R, Kurniawan A, Mohd Yusof MYP. Applications of contemporary artificial intelligence technology in forensic odontology as primary forensic identifier: A scoping review. Front Artif Intell. 2022 Dec 6;5:1049584.
Kornman KS. Mapping the pathogenesis of periodontitis: A new look. J Peri odontol. 2008;79:1560-8. .
Hajishengallis G. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontol 2000. 2022;89:9-18. .
Pihlstrom BL. Periodontal risk assessment, diagnosis and treatment plan ning. Periodontol 2000. 2001;25:37-58. .
Lee JH, Lee JS, Choi JK, Kweon HI, Kim YT, Choi SH. National dental policies and socio-demographic factors affecting changes in the incidence of periodontal treatments in Korean: A nationwide population-based retrospective cohort study from 2002-2013. BMC Oral Health. 2016 Nov 5;16(1):118.
Furman E, Jasinevicius TR, Bissada NF, Victoroff KZ, Skillicorn R, Buchner M. Virtual reality distraction for pain control during periodontal scaling and root planing procedures. J Am Dent Assoc. 2009 Dec;140(12):1508-16.
Sohmura T, Kusumoto N, Otani T, Yamada S, Wakabayashi K, Yatani H. CAD/CAM fabrication and clinical application of surgical template and bone model in oral implant surgery. Clin Oral Implants Res. 2009 Jan;20(1):87-93.
Atalay C; Balcı N; Toygar H. Periodontal hastalık değerlendirmesi ve prognozunda yapay zekâ katkıları. Diş Hekimliğinde Yapay Zekâ Uygulamaları, Hasan Fehmi Ateş, Kader Cesur Aydın, Türkiye Klinikleri Yayınevi, İstanbul, ss.31-37, 20232023.
Revilla-León M, Gómez-Polo M, Barmak AB, Inam W, Kan JYK, Kois JC, Akal O. Dişeti iltihabı ve periodontal hastalık teşhisi için yapay zeka modelleri: Sistematik bir derleme. J Protez Dent. 2023 Aralık; 130(6):816-824.
Ahmed N, Abbasi MS, Zuberi F, Qamar W, Halim MSB, Maqsood A, Alam MK. Yapay Zeka Teknikleri: Diş Hekimliğinde Analiz, Uygulama ve Sonuç-Sistematik Bir İnceleme. Biomed Res Int. 2021 Haziran 22;2021:9751564.
Li Y, Wu X, Liu M, Deng K, Tullini A, Zhang X, Shi J, Lai H, Tonetti MS. Enhanced control of periodontitis by an artificial intelligence-enabled multimodal-sensing toothbrush and targeted mHealth micromessages: A randomized trial. J Clin Periodontol. 2024 Dec;51(12):1632-1643.
Shen KL, Huang CL, Lin YC, Du JK, Chen FL, Kabasawa Y, Chen CC, Huang HL. Periodontitisli hastalarda yapay zeka destekli dental izleme müdahalesinin etkileri: Randomize kontrollü bir çalışma. J Klinik Periodontol. 2022 Ekim; 49(10):988-998.
Polizzi A, Quinzi V, Lo Giudice A, Marzo G, Leonardi R, Isola G. Periodontitis tahmininde yapay zeka modellerinin doğruluğu: sistematik bir derleme. JDR Klinik Trans Res. 2024 Ekim; 9(4):312-324.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, Krishnamurthy VR. İmplant diş hekimliğinde yapay zeka uygulamaları: Sistematik bir derleme. J Protez Dent. 2023 Şubat; 129(2):293-300.
Kurt Bayrakdar S, Orhan K, Bayrakdar İş, Bilgir E, Yevzhov M, Gusarev M, Shumilov E. Konik ışınlı bilgisayarlı tomografi görüntülerinde dental implant planlaması için derin öğrenme yaklaşımı. BMC Med Görüntüleme. 2021 Mayıs 19; 21(1):86.
Hung, K. F., Yeung, A. W. K., Bornstein, M. M., & Schwendicke, F. (2023). Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dento-Maxillo-Facial Radiology, 52(1), 20220335.
Schwendicke, F., & Krois, J. (2022). Data dentistry: How data are changing clinical care and research. Journal of Dental Research, 101(1), 21–29.
Ossowska, A., Kusiak, A., & Świetlik, D. (2022). Artificial ıntelligence in dentistry- narrative review. International Journal of Environmental Research and Public Health, 19(6), 3449.
Vodanović, M., Subašić, M., Milošević, D., & Savić Pavičin, I. (2023). Artificial Intelligence in Medicine and Dentistry. Acta Stomatologica Croatica, 57(1), 70–84.
Ahmed, N., Abbasi, M. S., Zuberi, F., Qamar, W., Halim, M. S. B., Maqsood, A., & Alam, M. K. (2021). Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. BioMed Research International, 2021, 2021.1: 9751564.