Diş Hekimliğinde Yapay Zeka Uygulamaları
Özet
Referanslar
Ding H, Wu J, Zhao W, Matinlinna J, Burrow M, Tsoi J. Artificial intelligence in dentistry—A review. Frontiers in Dental Medicine. 2023;4:1085251.
Güzel Ş, DÖMbekcİ H, Eren F. Yapay Zekânın Sağlık Alanında Kullanımı: Nitel Bir Araştırma. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2022;9.
Pekiner GKAFMN. Artificial Intelligence Applications In Dentistry. Current Researches in Health Sciences-I 2023;51:68.
Acar O. Yapay zeka fırsat mı yoksa tehdit mi. İstanbul: Kriter Yayınevi. 2020.
Moor J. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AI Magazine. 2006;27(4):87.
Jenkins P. Buy a robot secretary? Dent Manage. 1967;7(3):72 passim.
Kaya M. SANAYİ 4.0’DA YAPAY ZEKÂ VE TÜRKİYE. Firat University International Journal of Economics and Administrative Sciences. 2021;5(2):63-94.
Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci. 2021;16(1):508-22.
Rajaraman V. JohnMcCarthy—Father of artificial intelligence. Resonance. 2014;19:198-207.
Ratner B. A comparison of two popular machine learning methods. Mine Tech. 2000.
Yaji A, Prasad S, Pai A. Artificial intelligence in dento-maxillofacial radiology. Acta Sci Dent Sci. 2019;3(1):116-21.
Bircan H, Zontul M, Zontul M, Yüksel AG. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi. 2010;20(2):219-39.
Fausett L, Elwasif W, editors. Predicting performance from test scores using backpropagation and counterpropagation. Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94); 1994: IEEE.
AYDIN AGA. DERİN ÖĞRENME. Bilgisayar Bilimlerinde Teorik Ve Uygulamalı Araştırmalar.105.
Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and Research Advances. J Can Dent Assoc. 2021;87:l7.
Atalay C, Balcı N, Toygar H. Periodontal hastalık değerlendirmesi ve prognozunda yapay zekâ katkıları. 2023.
Shan T, Tay F, Gu L. Application of artificial intelligence in dentistry. Journal of dental research. 2021;100(3):232-44.
Hwang J-J, Azernikov S, Efros AA, Yu SX. Learning beyond human expertise with generative models for dental restorations. arXiv preprint arXiv:180400064. 2018.
Katne T, Kanaparthi A, Gotoor S, Muppirala S, Devaraju R, Gantala R. Artificial intelligence: demystifying dentistry–the future and beyond. Int J Contemp Med Surg Radiol. 2019;4(4):D6-D9.
Geetha V, Aprameya K, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health information science and systems. 2020;8:1-14.
Flores A, Rysavy S, Enciso R, Okada K, editors. Non-invasive differential diagnosis of dental periapical lesions in cone-beam CT. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro; 2009: IEEE.
Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone‐beam CT scans. Medical physics. 2015;42(4):1653-65.
Kim Y, Lee KJ, Sunwoo L, Choi D, Nam C-M, Cho J, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Investigative radiology. 2019;54(1):7-15.
Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiology. 2020;49(1):20190107.
Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F. Deep learning for the radiographic detection of apical lesions. Journal of endodontics. 2019;45(7):917-22. e5.
Pauwels R, Brasil DM, Yamasaki MC, Jacobs R, Bosmans H, Freitas DQ, Haiter-Neto F. Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers. Oral surgery, oral medicine, oral pathology and oral radiology. 2021;131(5):610-6.
Orhan K, Bayrakdar I, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans. International endodontic journal. 2020;53(5):680-9.
Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiology. 2019;48(3):20180218.
Orhan K, Yazici G, Kolsuz ME, Kafa N, Bayrakdar IS, Çelik Ö. An artificial intelligence hypothetical approach for masseter muscle segmentation on ultrasonography in patients with bruxism. Journal of Advanced Oral Research. 2021;12(2):206-13.
Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. A novel thresholding based algorithm for detection of vertical root fracture in nonendodontically treated premolar teeth. Journal of Medical Signals & Sensors. 2016;6(2):81-90.
Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics. 2020;10(6):430.
Ossowska A, Kusiak A, Świetlik D. Artificial Intelligence in Dentistry-Narrative Review. Int J Environ Res Public Health. 2022;19(6).
Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Scientific Reports. 2019;9(1):8495.
Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-23.
Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Artificial neural networks for the diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS One. 2014;9(3):e89757.
Vadzyuk S, Boliuk Y, Luchynskyi M, Papinko I, Vadzyuk N. PREDICTION OF THE DEVELOPMENT OF PERIODONTAL DISEASE. Proceeding of the Shevchenko Scientific Society Medical Sciences. 2021;65(2).
Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci Rep. 2020;10(1):7531.
Ahmad P, Alam MK, Aldajani A, Alahmari A, Alanazi A, Stoddart M, Sghaireen MG. Dental Robotics: A Disruptive Technology. Sensors (Basel). 2021;21(10).
Alalharith DM, Alharthi HM, Alghamdi WM, Alsenbel YM, Aslam N, Khan IU, et al. A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster Region-Based Convolutional Neural Networks. Int J Environ Res Public Health. 2020;17(22).
Cha JY, Yoon HI, Yeo IS, Huh KH, Han JS. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs. J Clin Med. 2021;10(5).
Kurt Bayrakdar S, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, Shumilov E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging. 2021;21(1):86.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, Krishnamurthy VR. Artificial intelligence applications in implant dentistry: A systematic review. The Journal of Prosthetic Dentistry. 2023;129(2):293-300.
Moran M, Faria M, Giraldi G, Bastos L, Conci A. Do Radiographic Assessments of Periodontal Bone Loss Improve with Deep Learning Methods for Enhanced Image Resolution? Sensors (Basel). 2021;21(6).
Bezruk V, Krivenko S, Kryvenko L, editors. Salivary lipid peroxidation and periodontal status detection in ukrainian atopic children with convolutional neural networks. 2017 4th International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T); 2017 10-13 Oct. 2017.
Rana A, Yauney G, Wong LC, Gupta O, Muftu A, Shah P. Automated segmentation of gingival diseases from oral images. 2017. p. 144-7.
Kouznetsova VL, Li J, Romm E, Tsigelny IF. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral diseases. 2021;27(3):484-93.
Adel S, Zaher A, El Harouni N, Venugopal A, Premjani P, Vaid N. Robotic Applications in Orthodontics: Changing the Face of Contemporary Clinical Care. Biomed Res Int. 2021;2021:9954615.
Widmann G. Image-guided surgery and medical robotics in the cranial area. Biomed Imaging Interv J. 2007;3(1):e11.
Leonardi R, Giordano D, Maiorana F. An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. J Biomed Biotechnol. 2009;2009:717102.
Kim BS, Yeom HG, Lee JH, Shin WS, Yun JP, Jeong SH, et al. Deep Learning-Based Prediction of Paresthesia after Third Molar Extraction: A Preliminary Study. Diagnostics (Basel). 2021;11(9).
Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg. 2021;122(4):333-7.
Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, et al. Deep learning based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1954.
Zhang W, Li J, Li ZB, Li Z. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep. 2018;8(1):12281.
Patcas R, Timofte R, Volokitin A, Agustsson E, Eliades T, Eichenberger M, Bornstein MM. Facial attractiveness of cleft patients: a direct comparison between artificial-intelligence-based scoring and conventional rater groups. Eur J Orthod. 2019;41(4):428-33.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, Krishnamurthy VR. Artificial intelligence applications in implant dentistry: A systematic review. The Journal of prosthetic dentistry. 2023;129(2):293-300.
Sukegawa S, Yoshii K, Hara T, Matsuyama T, Yamashita K, Nakano K, et al. Multi-Task Deep Learning Model for Classification of Dental Implant Brand and Treatment Stage Using Dental Panoramic Radiograph Images. Biomolecules. 2021;11(6).
Yin C, Qian B, Wei J, Li X, Zhang X, Li Y, Zheng Q, editors. Automatic generation of medical imaging diagnostic report with hierarchical recurrent neural network. 2019 IEEE international conference on data mining (ICDM); 2019: IEEE.
Kwak Y, Nguyen VH, Hériveaux Y, Belanger P, Park J, Haïat G. Ultrasonic assessment of osseointegration phenomena at the bone-implant interface using convolutional neural network. J Acoust Soc Am. 2021;149(6):4337.
Lee CT, Kabir T, Nelson J, Sheng S, Meng HW, Van Dyke TE, et al. Use of the deep learning approach to measure alveolar bone level. J Clin Periodontol. 2022;49(3):260-9.
Halicek M, Lu G, Little JV, Wang X, Patel M, Griffith CC, et al. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J Biomed Opt. 2017;22(6):60503.
Poedjiastoeti W, Suebnukarn S. Application of Convolutional Neural Network in the Diagnosis of Jaw Tumors. Healthc Inform Res. 2018;24(3):236-41.
Lim K, Moles DR, Downer MC, Speight PM. Opportunistic screening for oral cancer and precancer in general dental practice: results of a demonstration study. Br Dent J. 2003;194(9):497-502; discussion 493.
Mohd Dom R, Abdul Kareem S, Abidin B, Mazlipah S, Norzaidi M. The use of artificial intelligence to identify people at risk of oral cancer: empirical evidence in Malaysian university. International Journal of Scientific Research in Education. 2010;3:10-20.
Ilhan B, Lin K, Guneri P, Wilder-Smith P. Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence. J Dent Res. 2020;99(3):241-8.
Panahi O. AI: A New Frontier in Oral and Maxillofacial Surgery. Acta Scientific Dental Scienecs. 2024;8:40-2.
Israni ST, Verghese A. Humanizing artificial intelligence. Jama. 2019;321(1):29-30.
Tekeli A. YAPAY ZEKANIN ORTODONTİK TEDAVİDEKİ ROLÜ. The Journal of Kırıkkale University Faculty of Medicine. 2023;25(2):340-6.
Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. The Angle Orthodontist. 2010;80(2):262-6.
Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopadie. 2020;81(1).
Yu H, Cho S, Kim M, Kim W, Kim J, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. Journal of dental research. 2020;99(3):249-56.
Choi H-I, Jung S-K, Baek S-H, Lim WH, Ahn S-J, Yang I-H, Kim T-W. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. Journal of Craniofacial Surgery. 2019;30(7):1986-9.
Patcas R, Bernini DA, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. International journal of oral and maxillofacial surgery. 2019;48(1):77-83.
Niño-Sandoval TC, Pérez SVG, González FA, Jaque RA, Infante-Contreras C. Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III. Forensic science international. 2017;281:187. e1-. e7.
Murata S, Lee C, Tanikawa C, Date S, editors. Towards a fully automated diagnostic system for orthodontic treatment in dentistry. 2017 IEEE 13th international conference on e-science (e-science); 2017: IEEE.
Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. International journal of computer assisted radiology and surgery. 2015;10:1737-52.
Yüce F, Tassoker M. The applications of artificial intelligence in dentistry. Yeditepe Dental Journal. 2023;19:141-9.
Ceylan G, Özel GS, Memişoglu G, Emir F, Şen S. Evaluating the Facial Esthetic Outcomes of Digital Smile Designs Generated by Artificial Intelligence and Dental Professionals. Applied Sciences. 2023;13(15):9001.
Wei J, Peng M, Li Q, Wang Y. Evaluation of a novel computer color matching system based on the improved back‐propagation neural network model. Journal of Prosthodontics. 2018;27(8):775-83.
Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI. J Dent Res. 2019;98(11):1234-8.
Zhang J, Xia JJ, Li J, Zhou X. Reconstruction-Based Digital Dental Occlusion of the Partially Edentulous Dentition. IEEE Journal of Biomedical and Health Informatics. 2017;21(1):201-10.
Beaumont AJ, Bianco HJ. Microcomputer-aided removable partial denture design. The Journal of Prosthetic Dentistry. 1989;62(4):417-21.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak AB, Gallucci GO, Att W, et al. Artificial intelligence models for tooth-supported fixed and removable prosthodontics: A systematic review. The Journal of Prosthetic Dentistry. 2023;129(2):276-92.
Wenzel A. Computer-automated caries detection in digital bitewings: consistency of a program and its influence on observer agreement. Caries Res. 2001;35(1):12-20.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak AB, Özcan M, Att W, Krishnamurthy VR. Artificial intelligence applications in restorative dentistry: A systematic review. J Prosthet Dent. 2022;128(5):867-75.
Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.
Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, et al. Detecting white spot lesions on dental photography using deep learning: A pilot study. J Dent. 2021;107:103615.
Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, et al. Caries Detection with Near-Infrared Transillumination Using Deep Learning. J Dent Res. 2019;98(11):1227-33.
Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-11.
Devlin H, Williams T, Graham J, Ashley M. The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. British Dental Journal. 2021;231(8):481-5.
Bayraktar Y, Ayan E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clinical Oral Investigations. 2022;26(1):623-32.
Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, Schwendicke F. Deep Learning for the Radiographic Detection of Apical Lesions. Journal of Endodontics. 2019;45(7):917-22.e5.
Sherwood AA, Sherwood AI, Setzer FC, K SD, Shamili JV, John C, Schwendicke F. A Deep Learning Approach to Segment and Classify C-Shaped Canal Morphologies in Mandibular Second Molars Using Cone-beam Computed Tomography. J Endod. 2021;47(12):1907-16.
Kositbowornchai S, Plermkamon S, Tangkosol T. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study. Dent Traumatol. 2013;29(2):151-5.
Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys. 2015;42(4):1653-65.
Herbst CS, Schwendicke F, Krois J, Herbst SR. Association between patient-, tooth- and treatment-level factors and root canal treatment failure: A retrospective longitudinal and machine learning study. J Dent. 2022;117:103937.
Qu Y, Wen Y, Chen M, Guo K, Huang X, Gu L. Predicting case difficulty in endodontic microsurgery using machine learning algorithms. J Dent. 2023;133:104522.
Huang T, Ba- Hattab R, Yigit D, Anweigi L, Alhadeethi T, Raja M, et al. Impact of Virtual Reality Simulation in Endodontics on the Learning Experiences of Undergraduate Dental Students. Applied Sciences. 2023.
Kong Y, Posada-Quintero HF, Tran H, Talati A, Acquista TJ, Chen IP, Chon KH. Differentiating between stress- and EPT-induced electrodermal activity during dental examination. Computers in Biology and Medicine. 2023;155:106695.
Alessa N. Application of Artificial Intelligence in Pediatric Dentistry: A Literature Review. J Pharm Bioallied Sci. 2024;16(Suppl 3):S1938-s40.
You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020;20(1):141.
Gajic M, Vojinovic J, Kalevski K, Pavlovic M, Kolak V, Vukovic B, et al. Analysis of the impact of oral health on adolescent quality of life using standard statistical methods and artificial intelligence algorithms. Children. 2021;8(12):1156.
Patil V, Vineetha R, Vatsa S, Shetty DK, Raju A, Naik N, Malarout N. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Engineering. 2020;7(1):1723783.
Mahasantipiya P, Yeesarapat U, Suriyadet T, Sricharoen J, Dumrongwanich A, Thaiupathump T, editors. Bite mark identification using neural networks: A preliminary study. Proceedings of the international multiconference of engineers and computer scientists; 2011.