Pediatrik Multipl Sklerozda Tedavi Yönetimi
Özet
Multipl skleroz (MS), santral sinir sisteminin kronik, ilerleyici ve relapslarla seyreden demiyelinizan bir hastalığıdır. Vakaların %3-7’si pediatrik yaş grubunda başlar. Çocukluk çağı MS'i genellikle relapsing-remitting fenotipinde görülür ve erişkinlere kıyasla daha sık ve şiddetli ataklarla seyreder.
Tedavi stratejileri akut atak tedavisi ve uzun süreli hastalık modifiye edici tedaviler olarak ikiye ayrılır. Akut ataklarda yüksek doz intravenöz metilprednizolon, intravenöz immünglobulin ve plazma değişimi tercih edilir. Uzun süreli tedavide interferon beta, glatiramer asetat ve teriflunomid gibi birinci basamak tedaviler, daha dirençli vakalarda fingolimod, dimetil fumarat ve monoklonal antikorlar (natalizumab, okrelizumab) kullanılır.
Son yıllarda yüksek etkinlikli tedavilere erken başlanmasının hastalık progresyonunu azalttığı gösterilmiştir. Ancak çocuklarda tedaviye ilişkin kanıta dayalı veriler sınırlıdır. MS'li çocuk hastaların multidisipliner bir yaklaşımla izlenmesi, bilişsel ve psikososyal desteğin sağlanması önemlidir. Aşılama ve enfeksiyon taramaları tedavi sürecinin ayrılmaz bir parçasıdır.
Multiple sclerosis (MS) is a chronic, progressive, and relapsing-remitting demyelinating disease of the central nervous system. Approximately 3-7% of cases have a pediatric onset. Pediatric MS predominantly follows a relapsing-remitting course, with more frequent and severe attacks compared to adult-onset MS.
Treatment strategies are classified into acute attack management and long-term disease-modifying therapies. Acute attacks are primarily managed with high-dose intravenous methylprednisolone, intravenous immunoglobulin, and plasma exchange. Long-term treatment includes first-line therapies such as interferon-beta, glatiramer acetate, and teriflunomide, whereas more refractory cases require second-line agents like fingolimod, dimethyl fumarate, and monoclonal antibodies (natalizumab, ocrelizumab).
Recent studies suggest that early initiation of high-efficacy treatments may mitigate disease progression. However, evidence-based data on pediatric MS treatment remain limited. A multidisciplinary approach is essential for managing pediatric patients, ensuring cognitive and psychosocial support. Vaccination and infection screening are integral components of the therapeutic process.
Referanslar
Chitnis T, Glanz B, Jaffin S, Healy B. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler. 2009;15(5):627-631. doi:10.1177/1352458508101933
McKay KA, Hillert J, Manouchehrinia A. Long-term disability progression of pediatric-onset multiple sclerosis. Neurology. 2019;92(24):E2764-E2773. doi:10.1212/WNL.0000000000007647
Krupp LB, Tardieu M, Amato MP, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261-1267. doi:10.1177/1352458513484547
Yılmaz Ü, Gücüyener K, Yavuz M, et al. Re-examining the characteristics of pediatric multiple sclerosis in the era of antibody-associated demyelinating syndromes. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2022;41:8-18. doi:10.1016/j.ejpn.2022.08.006
Yılmaz Ü, Anlar B, Gücüyener K, et al. Characteristics of pediatric multiple sclerosis: The Turkish pediatric multiple sclerosis database. Eur J Paediatr Neurol. 2017;21(6):864-872. doi:10.1016/J.EJPN.2017.06.004
Renoux C, Vukusic S, Mikaeloff Y, et al. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356(25):2603-2613. doi:10.1056/NEJMOA067597
Chitnis T, Tenembaum S, Banwell B, et al. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult Scler. 2012;18(1):116-127. doi:10.1177/1352458511430704
Duignan S, Brownlee W, Wassmer E, et al. Paediatric multiple sclerosis: a new era in diagnosis and treatment. Dev Med Child Neurol. 2019:1-12. doi:10.1111/dmcn.14212
Huppke P, Gärtner J. A practical guide to pediatric multiple sclerosis. Neuropediatrics. 2010;41(4):157-162. doi:10.1055/s-0030-1267155
Waldman A, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M, Banwell B. Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research. Lancet Neurol. 2014;13(9):936-948. doi:10.1016/S1474-4422(14)70093-6
Wang CX, Greenberg BM. Pediatric Multiple Sclerosis: From Recognition to Practical Clinical Management. Neurol Clin. 2018;36(1):135-149. doi:10.1016/j.ncl.2017.08.005
Tenembaum SN. Treatment of multiple sclerosis and neuromyelitis optica in children and adolescents. Clin Neurol Neurosurg. 2013;115(SUPPL.1):S21-S29. doi:10.1016/j.clineuro.2013.09.016
Margoni M, Rinaldi F, Perini P, Gallo P. Therapy of Pediatric-Onset Multiple Sclerosis: State of the Art, Challenges, and Opportunities. Front Neurol. 2021;12:676095. doi:10.3389/fneur.2021.676095
Gonzalez-Lorenzo M, Ridley B, Minozzi S, et al. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane database Syst Rev. 2024;1(1):CD011381. doi:10.1002/14651858.CD011381.pub3
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol. 2022;13(June). doi:10.3389/fneur.2022.824926
Ghezzi A, Amato MP, Edan G, et al. The introduction of new medications in pediatric multiple sclerosis: Open issues and challenges. Mult Scler J. 2021;27(3):479-482. doi:10.1177/1352458520930620
Hacohen Y, Banwell B, Ciccarelli O. What does first-line therapy mean for paediatric multiple sclerosis in the current era? Mult Scler J. 2021;27(13):1970-1976. doi:10.1177/1352458520937644
Selmaj K, Cree BAC, Barnett M, Thompson A, Hartung H-P. Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol. 2024;271(1):105-115. doi:10.1007/s00415-023-11969-8
Jakimovski D, Bittner S, Zivadinov R, et al. Multiple sclerosis. Lancet (London, England). 2024;403(10422):183-202. doi:10.1016/S0140-6736(23)01473-3
Ghezzi A. Old and New Strategies in the Treatment of Pediatric Multiple Sclerosis: A Personal View for a New Treatment Approach. Neurol Ther. 2024;13(4):949-963. doi:10.1007/s40120-024-00633-6
Henderson M, Horton DB, Bhise V, Pal G, Bushnell G, Dave C V. Initiation Patterns of Disease-Modifying Therapies for Multiple Sclerosis Among US Adults and Children, 2001 Through 2020. JAMA Neurol. 2023;80(8):860-867. doi:10.1001/jamaneurol.2023.2125
Moreau A, Kolitsi I, Kremer L, et al. Early use of high efficacy therapies in pediatric forms of relapsing-remitting multiple sclerosis: A real-life observational study. Mult Scler Relat Disord. 2023;79:104942. doi:10.1016/j.msard.2023.104942
Benallegue N, Rollot F, Wiertlewski S, et al. Highly Effective Therapies as First-Line Treatment for Pediatric-Onset Multiple Sclerosis. JAMA Neurol. 2024;81(3):273-282. doi:10.1001/jamaneurol.2023.5566
Krysko KM, Graves JS, Rensel M, et al. Real-World Effectiveness of Initial Disease-Modifying Therapies in Pediatric Multiple Sclerosis. Ann Neurol. 2020;88(1):42-55. doi:10.1002/ANA.25737
Spelman T, Simoneau G, Hyde R, et al. Comparative Effectiveness of Natalizumab, Fingolimod, and Injectable Therapies in Pediatric-Onset Multiple Sclerosis: A Registry-Based Study. Neurology. 2024;102(7):e208114. doi:10.1212/WNL.0000000000208114
Johnen A, Elpers C, Riepl E, et al. Early effective treatment may protect from cognitive decline in paediatric multiple sclerosis. Eur J Paediatr Neurol. 2019;23(6):783-791. doi:10.1016/J.EJPN.2019.08.007
Abdel-Mannan OA, Manchoon C, Rossor T, et al. Use of Disease-Modifying Therapies in Pediatric Relapsing-Remitting Multiple Sclerosis in the United Kingdom. Neurol Neuroimmunol neuroinflammation. 2021;8(4). doi:10.1212/NXI.0000000000001008
Banwell B, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M. Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol. 2007;6(10):887-902. doi:10.1016/S1474-4422(07)70242-9
Chitnis T, Banwell B, Kappos L, et al. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(12):1001-1011. doi:10.1016/S1474-4422(21)00364-1
Vermersch P, Scaramozza M, Levin S, et al. Effect of Dimethyl Fumarate vs Interferon β-1a in Patients With Pediatric-Onset Multiple Sclerosis: The CONNECT Randomized Clinical Trial. JAMA Netw open. 2022;5(9):e2230439. doi:10.1001/jamanetworkopen.2022.30439
Chitnis T, Arnold DL, Banwell B, et al. Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. N Engl J Med. 2018;379(11):1017-1027. doi:10.1056/NEJMOA1800149
Graille-Avy L, Boutiere C, Rigollet C, et al. Effect of Prior Treatment With Fingolimod on Early and Late Response to Rituximab/Ocrelizumab in Patients With Multiple Sclerosis. Neurol Neuroimmunol neuroinflammation. 2024;11(3):e200231. doi:10.1212/NXI.0000000000200231
Caliendo D, Grassia MC, Carotenuto A, et al. Switching to ozanimod as a strategy to adjust fingolimod-related lymphopenia. Mult Scler Relat Disord. 2024;81:105135. doi:10.1016/j.msard.2023.105135
Margoni M, Rinaldi F, Riccardi A, Franciotta S, Perini P, Gallo P. No evidence of disease activity including cognition (NEDA-3 plus) in naïve pediatric multiple sclerosis patients treated with natalizumab. J Neurol. 2020;267(1):100-105. doi:10.1007/s00415-019-09554-z
Kornek B, Aboul-Enein F, Rostasy K, et al. Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol. 2013;70(4):469-475. doi:10.1001/jamaneurol.2013.923
Ghezzi A, Moiola L, Pozzilli C, et al. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015;15:174. doi:10.1186/s12883-015-0433-y
Bibinoğlu Amirov C, Saltık S, Yalçınkaya C, et al. Ocrelizumab in pediatric multiple sclerosis. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2023;43:1-5. doi:10.1016/j.ejpn.2023.01.011
Langer-Gould A, Li BH, Smith JB, Xu S. Multiple Sclerosis, Rituximab, Hypogammaglobulinemia, and Risk of Infections. Neurol Neuroimmunol neuroinflammation. 2024;11(3):e200211. doi:10.1212/NXI.0000000000200211
Venet M, Lepine A, Maarouf A, et al. Control of disease activity with large extended-interval dosing of rituximab/ocrelizumab in highly active pediatric multiple sclerosis. Mult Scler. 2024;30(2):261-265. doi:10.1177/13524585231223069
Winkelmann A, Loebermann M, Barnett M, Hartung H-P, Zettl UK. Vaccination and immunotherapies in neuroimmunological diseases. Nat Rev Neurol. 2022;18(5):289-306. doi:10.1038/s41582-022-00646-5
Otero-Romero S, Lebrun-Frénay C, Reyes S, et al. European Committee for Treatment and Research in Multiple Sclerosis and European Academy of Neurology consensus on vaccination in people with multiple sclerosis: Improving immunization strategies in the era of highly active immunotherapeutic drugs. Eur J Neurol. 2023;30(8):2144-2176. doi:10.1111/ene.15809