Molibden
Özet
Molibden, tüm canlı organizmalar için gerekli bir eser element olup, biyolojik süreçlerde kritik rol oynayan metal bağlı kofaktörlerin temel bileşenlerinden biridir. Molibden içeren enzimler (molibdoenzimler), özellikle karbon, nitrojen ve kükürt metabolizmasında redoks reaksiyonlarını katalize eder. İnsanlarda dört temel molibdoenzim tanımlanmıştır: sülfit oksidaz, mitokondriyal amidoksim indirgeyici bileşen, ksantin oksidaz ve aldehit oksidaz. Bu enzimler, pürin katabolizması, detoksifikasyon mekanizmaları ve hücresel enerji dengesinin düzenlenmesinde görev alır.
Molibdenin temel besin kaynakları arasında baklagiller, tam tahıllar ve süt ürünleri yer almakta olup, yetişkinler için önerilen günlük alım miktarı 45 µg/gün olarak belirlenmiştir. Molibden eksikliği nadir görülmekle birlikte, molibden kofaktör eksikliği gibi genetik bozukluklarda sülfit oksidaz aktivitesinin azalması ciddi nörolojik hasarlara yol açmaktadır. Ayrıca, molibdenin bakır homeostazı üzerinde etkili olduğu ve yüksek dozlarının ikincil bakır eksikliğine sebep olabileceği bilinmektedir. Tetratiyomolibdat, bakır şelasyonu sağlayarak Wilson hastalığı ve bazı kanser türlerinin tedavisinde umut vadeden bir ajan olarak değerlendirilmektedir. Ancak, molibdenin toksik etkileri üzerine yapılan araştırmalar sınırlı olup, özellikle yüksek dozlarda nörolojik ve metabolik komplikasyonlara yol açabileceği bildirilmiştir.
Molybdenum is an essential trace element for all living organisms and is one of the fundamental components of metal-bound cofactors that play a critical role in biological processes. Molybdenum-containing enzymes (molybdoenzymes) catalyze redox reactions, particularly in carbon, nitrogen, and sulfur metabolism. Four primary molybdoenzymes have been identified in humans: sulfite oxidase, mitochondrial amidoxime reducing component, xanthine oxidase, and aldehyde oxidase. These enzymes are involved in purine catabolism, detoxification mechanisms, and the regulation of cellular energy balance.
The primary dietary sources of molybdenum include legumes, whole grains, and dairy products, with a recommended daily intake of 45 µg/day for adults. Although molybdenum deficiency is rare, genetic disorders such as molybdenum cofactor deficiency can lead to a decrease in sulfite oxidase activity, resulting in severe neurological damage. Additionally, molybdenum is known to influence copper homeostasis, and excessive intake may lead to secondary copper deficiency. Tetrathiomolybdate, a copper-chelating agent, is considered a promising therapeutic option for Wilson's disease and certain types of cancer. However, research on the toxic effects of molybdenum remains limited, with reports indicating that high doses may lead to neurological and metabolic complications.
Referanslar
Broadley M, Brown P, Cakmak I, et al. Function of nutrients: micronutrients. In: Marschner P, ed. Marschner’s mineral nutrition of higher plants, 3rd edn. San Diego: Academic Press, 2012. p.191–248.
Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. J Exp Bot. 2022;73(6):1766-1774. doi:10.1093/jxb/erab534.
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118883. doi:10.1016/j.bbamcr.2020.118883.
Weiss MC, Sousa FL, Mrnjavac N, et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1(9):16116. Published 2016 Jul 25. doi:10.1038/nmicrobiol.2016.116.
Zhang Y, Gladyshev VN. Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol. 2008;379(4):881-899. doi:10.1016/j.jmb.2008.03.051.
Magalon A, Mendel RR. Biosynthesis and Insertion of the Molybdenum Cofactor. EcoSal Plus. 2015; 6(2): 10.1128/ecosalplus. ESP-0006-2013. doi:10.1128/ecosalplus. ESP-0006-2013
Klein JM, Busch JD, Potting C, et al. The mitochondrial amidoxime-reducing component (mARC1) is a novel signal-anchored protein of the outer mitochondrial membrane. J Biol Chem.2012;287(51):42795-42803. doi:10.1074/jbc.M112.419424.
Kelley EE, Khoo NK, Hundley NJ, et al. Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med. 2010;48(4):493-498. doi:10.1016/j.freeradbiomed.2009.11.012.
Terao M, Garattini E, Romão MJ, et al. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem. 2020; 295(16): 5377-5389. doi:10.1074/jbc.REV119.007741.
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022; 185(16): 2853-2878. doi:10.1016/j.cell.2022.06.010
Gladwin MT, Schechter AN, Kim-Shapiro DB, et al. The emerging biology of the nitrite anion (published correction appears in Nat Chem Biol. 2006; 2(2):110). Nat Chem Biol. 2005;1(6):308-314. doi:10.1038/nchembio1105-308
Hunt CD, Meacham SL. Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: concentrations in common western foods and estimated daily intakes by infants; toddlers; and male and female adolescents, adults, and seniors in the United States. J Am Diet Assoc. 2001;101(9):1058-1060. doi:10.1016/S0002-8223(01)00260-7.
Novotny JA, Peterson CA. Molybdenum. Adv Nutr. 2018;9(3):272-273. doi:10.1093/advances/nmx001.
Hunt CD, Meacham SL. Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: concentrations in common Western foods and estimated daily intakes by infants; toddlers; and male and female adolescents, adults, and seniors in the United States. J Am Diet Assoc 2001;101:1058–60.
Tsongas TA, Meglen RR, Walravens PA, et al. Molybdenum in the diet: an estimate of average daily intake in the United States. Am J Clin Nutr 1980;33:1103–7.
Atwal PS, Scaglia F. Molybdenum cofactor deficiency. Mol Genet Metab 2016;117(1):1–4.
Food and Nutrition Board, Institute of Medicine. Molybdenum. In: Dietary Reference Intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press; 2001. p. 420–41.
Novotny JA. Molybdenum nutriture in humans. J Evid Compl Alt Med 2011;163:164–8.
Abumrad NN, Schneider AJ, Steel D, et al. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy. Am J Clin Nutr. 1981;34(11):2551-2559. doi:10.1093/ajcn/34.11.2551.
Reiss J, Hahnewald R. Molybdenum cofactor deficiency: Mutations in GPHN, MOCS1, and MOCS2. Hum Mutat. 2011;32(1):10-18.
Claerhout H, Witters P, Régal L, et al. Isolated sulfite oxidase deficiency. J Inherit Metab Dis. 2018;41(1):101-108. doi:10.1007/s10545-017-0089-4.
Leung FY. Trace elements in parenteral micronutrition. Clin Biochem. 1995;28(6):561-566. doi:10.1016/0009-9120(95)02007-8.
Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin Cancer Res 2017;23(3):666–76.
Llamas A, Chamizo-Ampudia A, Tejada-Jimenez M, et al. The molybdenum cofactor enzyme mARC: moonlighting or promiscuous enzyme? Biofactors 2017;43:486–94.
Boles JW, Klaassen CD. Effects of molybdate and pentachlorophenol on the sulfation of acetaminophen. Toxicology. 2000;146(1):23-35.