Vitamin B6 (Piridoksin)

Yazarlar

Özet

Vitamin B6, suda çözünebilen ve diyette farklı formlarda bulunan temel bir vitamindir. En aktif formu olan piridoksal 5'-fosfat (PLP), birçok enzime kofaktör olarak destek sağlar. Amino asit, karbonhidrat ve lipit metabolizmasının yanı sıra, nörotransmitter sentezi, mitokondriyal fonksiyonlar ve eritropoezde kritik roller üstlenir. PLP, dopamin, serotonin ve gama aminobütirik asit (GABA) gibi nörotransmitterlerin üretiminde yer alarak sinir sistemi sağlığında önemli bir düzenleyici işlev görür. Vitamin B6 eksikliği, bağışıklık sisteminde zayıflama, nöropati, depresyon ve nöbet gibi ciddi klinik belirtilere yol açabilir. Özellikle PLP eksikliği, GABA sentezini etkileyerek vitamin B6’ya duyarlı epilepsiye neden olabilir. Bunun yanı sıra, beslenme bozuklukları, gastrointestinal hastalıklar ve bazı ilaçlar da eksikliğe sebep olabilir. Diyetle alımı kırmızı et, balık, tahıllar, sebzeler ve meyveler yoluyla sağlanabilir. Gereksinim yaş, cinsiyet ve fizyolojik duruma göre değişir. Fazla alımı ise nörotoksik etkilere yol açabilir. Bu nedenle, uygun dozlarda alımı sinir sistemi ve genel sağlık için kritik öneme sahiptir. 

 

Vitamin B6 is a water-soluble essential vitamin found in various forms in the diet. Its most active form, pyridoxal 5'-phosphate (PLP), serves as a cofactor for numerous enzymes. It plays a crucial role in amino acid, carbohydrate, and lipid metabolism, as well as neurotransmitter synthesis, mitochondrial functions, and erythropoiesis. PLP is essential for the production of neurotransmitters such as dopamine, serotonin, and gamma-aminobutyric acid (GABA), making it a key regulator of nervous system health. Vitamin B6 deficiency can lead to immune dysfunction, neuropathy, depression, and seizures. Particularly, PLP deficiency affects GABA synthesis, resulting in vitamin B6-dependent epilepsy. Nutritional deficiencies, gastrointestinal disorders, and certain medications can also contribute to deficiency. Dietary sources of vitamin B6 include red meat, fish, grains, vegetables, and fruits. Requirements vary depending on age, gender, and physiological status. However, excessive intake may have neurotoxic effects. Therefore, adequate and balanced intake is essential for maintaining nervous system function and overall health.

Referanslar

Birch TW, György P, Harris LJ. The vitamin B(2) complex. Differentiation of the antiblacktongue and the "P.-P." factors from lactoflavin and vitamin B(6) (so-called "rat pellagra" factor). Parts I-VI. Biochem J. 1935;29(12):2830-2850.

Mooney S, Leuendorf JE, Hendrickson C, et al. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009;14(1):329-351.

Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference I, its Panel on Folate OBV, Choline. The National Academies Collection: Reports funded by National Institutes of Health. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academy of Sciences.; 1998. p. 150-195.

Wilson MP, Plecko B, Mills PB, et al. Disorders affecting vitamin B(6) metabolism. J Inherit Metab Dis. 2019;42(4):629-646.

Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020;26(1):5-13.

Parra M, Stahl S, Hellmann H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells. 2018;7(7):84.

Kall MA. Determination of total vitamin B6 in foods by isocratic HPLC: a comparison with microbiological analysis. Food Chemistry. 2003;82(2):315-327.

Bjørke-Monsen AL, Ueland PM. Vitamin B(6): a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023;67.

Wetherilt H, Açkurt F, Brubacher G, et al. Blood vitamin and mineral levels in 7-17 years old Turkish children. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1992;62 1:21-29.

Bingjun Q, Shanqi S, Jianhua Z, et al. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations. Journal of Immunology Research. 2017;2017.

Raman M, Akrivaki A, Georgia P, et al. The Role of Vitamin B6 in Peripheral Neuropathy: A Systematic Review. Nutrients. 2023;15.

Malouf R, Evans J. Vitamin B6 for cognition. Cochrane Database of Systematic Reviews. 2003.

van Karnebeek CD, Tiebout SA, Niermeijer J, et al. Pyridoxine-Dependent Epilepsy: An Expanding Clinical Spectrum. Pediatr Neurol. 2016;59:6-12.

Coughlin CR, 2nd, Swanson MA, Spector E, et al. The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: A common epileptic encephalopathy. J Inherit Metab Dis. 2019;42(2):353-361.

van de Ven S, Gardeitchik T, Kouwenberg D, et al. Long-term clinical outcome, therapy and mild mitochondrial dysfunction in hyperprolinemia. J Inherit Metab Dis. 2014;37(3):383-390.

Mills PB, Camuzeaux SS, Footitt EJ, et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137(Pt 5):1350-1360.

Mills PB, Surtees RA, Champion MP, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5'-phosphate oxidase. Hum Mol Genet. 2005;14(8):1077-1086.

Balasubramaniam S, Bowling F, Carpenter K, et al. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5'-phosphate availability. J Inherit Metab Dis. 2010;33 Suppl 3:S25-33.

Akiyama T, Kubota T, Ozono K, et al. Pyridoxal 5'-phosphate and related metabolites in hypophosphatasia: Effects of enzyme replacement therapy. Mol Genet Metab. 2018;125(1-2):174-180.

Plecko B, Zweier M, Begemann A, et al. Confirmation of mutations in PROSC as a novel cause of vitamin B ((6)) -dependent epilepsy. J Med Genet. 2017;54(12):809-814.

Coursin DB. Convulsive seizures in infants with pyridoxine-deficient diet. J Am Med Assoc. 1954;154(5):406-408.

Weir MR, Keniston RC, Enriquez JI, Sr., et al. Depression of vitamin B6 levels due to dopamine. Vet Hum Toxicol. 1991;33(2):118-121.

Mintzer S, Skidmore CT, Sperling MR. B-vitamin deficiency in patients treated with antiepileptic drugs. Epilepsy Behav. 2012;24(3):341-344.

Ubbink JB, Delport R, Becker PJ, et al. Evidence of a theophylline-induced vitamin B6 deficiency caused by noncompetitive inhibition of pyridoxal kinase. J Lab Clin Med. 1989;113(1):15-22.

Nohr D, Biesalski HK, Back EI. Vitamins | Vitamin B6. In: Fuquay JW, editor. Encyclopedia of Dairy Sciences (Second Edition). San Diego: Academic Press; 2011. p. 697-700.

Abosamak NR, Gupta V. Vitamin B6 (pyridoxine). StatPearls [Internet]: StatPearls Publishing; 2023.

Schellack G, Harirari P, Schellack N. B-complex vitamin deficiency and supplementation. SA Pharmaceutical Journal. 2016;83(4):14-19.

Brown MJ, Ameer MA, Daley SF, et al. Vitamin B6 Deficiency. StatPearls [Internet]: StatPearls Publishing; 2023.

Cohen M, Bendich A. Safety of pyridoxine--a review of human and animal studies. Toxicol Lett. 1986;34(2-3):129-139.

Yayınlanan

5 Mart 2025

Lisans

Lisans