Meme Radyolojisinde Yapay Zeka
Özet
Yapay zeka 1950'lerden beri bilinen ve makine öğrenimi ile bilgisayarlarda kullandığımız bilişsel taklittir. Derin öğrenme makine öğrenmesinin alt kümesidir. Derin öğrenmenin gelişmesi sayesinde sağlık alanında yapay zeka uygulamalarında umut veren sonuçlar alınmıştır. Meme radyolojisinde yapay zeka bu sayede son on yılda önem kazanmıştır. Özellikle meme kanseri taraması mamografi ile yapılması nedeniyle, mamografiye yönelik yapay zeka çalışmaları artmıştır. Ayrıca meme ultrasonu ve meme MR’ye yönelik yapay zeka çalışmaları da son yıllarda artmıştır. Şirketler, hükümetler ve üniversiteler iş birliğiyle süreç git gide hızlanmaktadır. Önümüzdeki on yılda meme radyolojisinde yapay zeka kullanımının rutin hale gelmesi şaşırtıcı olmayacaktır.
Artificial intelligence is the cognitive imitation that has been known since the 1950s and that we use in computers with machine learning. Deep learning is a subset of machine learning. Thanks to the development of deep learning, promising results have been obtained in artificial intelligence applications in the field of healthcare. Artificial intelligence in breast radiology has gained importance in the last decade. Especially since breast cancer screening is done with mammography, artificial intelligence studies on mammography have increased. In addition, artificial intelligence studies on breast ultrasound and breast MRI have increased in recent years. The process is accelerating with the cooperation of companies, governments and universities. It will not be surprising if the use of artificial intelligence in breast radiology becomes routine in the next decade.
Referanslar
Meme kanseri istatistik. (20.06.2024 tarihinde https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html adresinden ulaşılmıştır).
Fergus, P., Chalmers, C. Introduction to Deep Learning. In: Applied Deep Learning. Computational Intelligence Methods and Applications. Springer, Cham; 2022.p.141-171
Lehman CD, Wellman RD, Buist DS, et al. Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern Med. 2015;175(11):1828-1837. doi:10.1001/jamainternmed.2015.5231.
Kohli A, Jha S. Why CAD Failed in Mammography. J Am Coll Radiol. 2018;15(3 Pt B):535-537. doi:10.1016/j.jacr.2017.12.029.
Muralidhar GS, Haygood TM, Stephens TW, Whitman GJ, Bovik AC, Markey MK. Computer-aided detection of breast cancer - have all bases been covered?. Breast Cancer (Auckl). 2008;2:5-9. doi:10.4137/bcbcr.s785.
U.S. Food and Drug Administration. M1000 ImageChecker: Premarket Approval. 2022.(19.06.2024 tarihinde https://www.accessdata.fda.gov/scrIpts/cdrh/cfdocs/cfpma/pma.cfm?id=P970058 adresinden ulaşılmıştır).
Geras KJ, Mann RM, Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology. 2019;293(2):246-259. doi:10.1148/radiol.2019182627.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7.
Syed AH, Khan T. Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis [published correction appears in Front Oncol. 2023 Jan 05;12:1061324. doi: 10.3389/fonc.2022.1061324].
Çelik L. Meme Görüntülemede Yapay Zeka. In: Oktay A (ed) Meme hastalıklarında Görüntüleme. Ankara. Dünya Tıp Kitapevi; 2020.p 439-441.
Taylor CR, Monga N, Johnson C, Hawley JR, Patel M. Artificial Intelligence Applications in Breast Imaging: Current Status and Future Directions. Diagnostics (Basel). 2023;13(12):2041. Published 2023 Jun 13. doi:10.3390/diagnostics13122041.
von Euler-Chelpin M, Lillholm M, Vejborg I, Nielsen M, Lynge E. Sensitivity of screening mammography by density and texture: a cohort study from a population-based screening program in Denmark. Breast Cancer Res. 2019;21(1):111. Published 2019 Oct 17. doi:10.1186/s13058-019-1203-3.
Heinze F, Czwikla J, Heinig M, Langner I, Haug U. German mammography screening program: program sensitivity between 2010 and 2016 estimated based on German health claims data. BMC Cancer. 2023;23(1):852. Published 2023 Sep 11. doi:10.1186/s12885-023-11378-0
Memede Yapay Zeka (20.06.2024 tarihinde https://www.acrdsi.org/DSIBlog/2021/06/09/17/12/DSI-AI-Survey-Results adresinden alınmıştır).
Lång K, Josefsson V, Larsson AM, et al. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023;24(8):936-944. doi:10.1016/S1470-2045(23)00298-X.
Leibig C, Brehmer M, Bunk S, Byng D, Pinker K, Umutlu L. Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. Lancet Digit Health. 2022;4(7):e507-e519. doi:10.1016/S2589-7500(22)00070-X.
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening [published correction appears in Nature. 2020 Oct;586(7829):E19. doi: 10.1038/s41586-020-2679-9]. Nature. 2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6.
Kim K, Song MK, Kim EK, Yoon JH. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist. Ultrasonography. 2017;36(1):3-9. doi:10.14366/usg.16012.
Brunetti N, Calabrese M, Martinoli C, Tagliafico AS. Artificial Intelligence in Breast Ultrasound: From Diagnosis to Prognosis-A Rapid Review. Diagnostics (Basel). 2022;13(1):58. Published 2022 Dec 26. doi:10.3390/diagnostics13010058.
Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker AS, Boss A. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. Eur Radiol. 2019;29(10):5458-5468. doi:10.1007/s00330-019-06118-7.
Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 2018;91(1083):20170576. doi:10.1259/bjr.20170576.
Cruz-Bernal A, Flores-Barranco MM, Almanza-Ojeda DL, Ledesma S, Ibarra-Manzano MA. Analysis of the Cluster Prominence Feature for Detecting Calcifications in Mammograms. J Healthc Eng. 2018;2018:2849567. Published 2018 Dec 30. doi:10.1155/2018/2849567.
Zhou J, Zhang Y, Chang KT, et al. Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue. J Magn Reson Imaging. 2020;51(3):798-809. doi:10.1002/jmri.26981.
Potnis KC, Ross JS, Aneja S, Gross CP, Richman IB. Artificial Intelligence in Breast Cancer Screening: Evaluation of FDA Device Regulation and Future Recommendations. JAMA Intern Med. 2022;182(12):1306-1312. doi:10.1001/jamainternmed.2022.4969.
Mamografide malign kitle işaretleme (20.06.2024 tarihinde https://www.lunit.io/en/products/mmg adresinden ulaşılmıştır).