Antijen Sunumu ve Doku Uygunluk Antijenleri
Özet
Antijen işleme ve sunumu bağışık yanıtın temel taşlarıdır. Yüksek afiniteli antikorlar üretebilmek için Dendritik hücreler, T hücreleri ve B hücrelerinin işbirliği içinde bir arada çalışması gereklidir. Bu hücreler antijene özgü yüzey reseptörleri ve bağlantı kurdukları peptid-MHC komplexlerini kullanarak sürece yardımcı olurlar. Virüsle enfekte hücrelerle mücadele genellikle sitotoksik CD8+ T hücrelerine bağlıdır ve bu hücreler de peptit-MHC kompleksleri aracılığıyla bu süreci yönetir. Hem CD8+ T hücreleri hemde CD4+ T hücreleri antijenik peptitleri sunan MHC sınıf I ve sınıf II moleküllerinin antijen sunumu ile bağışık yanıta katılır. Bu bölümde antijen işleme ve sunumunun temelleri ve bu sürece katkıda bulunan hücre içi ve dışı mekanizmalara kısaca değinilecektir.
Antigen processing and presentation are the cornerstones of the immune response. Dendritic cells, T cells and B cells must work together in cooperation to produce high-affinity antibodies. These cells help the process by utilizing antigen-specific surface receptors and the peptide-MHC complexes they bind to. The fight against virus-infected cells is often dependent on cytotoxic CD8+ T cells, which manage the process through peptide-MHC complexes. Both CD8+ T cells and CD4+ T cells participate in the immune response through antigen presentation of MHC class I and class II molecules that present antigenic peptides. This chapter will briefly review the basics of antigen processing and presentation and the intracellular and extracellular mechanisms that contribute to this process.
Referanslar
La Gruta N.L, Gras S, Daley S.R, et al. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol . 2018;18:467–478.
Anderson D.A, Murphy K.M, Briseno C.G. Development, diversity, and function of dendritic cells in mouse and human. Cold Spring Harb Perspect Biol . 2018;10:a028613.
Eisenbarth S.C. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol . 2019;19:89–103.
Vargas, P., et al., 2016. Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat. Cell Biol. 18 (1), 43–53.
Braud V.M., Allan D.S.J., and McMichael A.J. (1999) Functions of nonclassical MHC and non‐MHC‐encoded class I molecules. Current Opinion in Immunology 11, 100–108.
Neefjes J.I., Jongsma M.L., Paul P., and Bakke O. (2011) Towards a systems understanding of MHC class 1 and MHC class II antigen presentation. Nature Reviews Immunology 11, 823–836.
West, M.A., et al., 2004. Enhanced dendritic cell antigen capture via toll-like receptorinduced actin remodeling. Science 305 (5687), 1153–1157.
Ben A Hulette 1, Cindy A Ryan, G Frank Gerberick.Toxicol Appl Pharmacol . 2002 Aug 1;182(3):226-33. doi: 10.1006/taap.2002.9447. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment.
Chunyu Tong, Yimin Liang, Xianle Han, Zhelin Zhang, Xiaohui Zheng, Sen Wang, and Bocui Song*. Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines. 2023 Jun; 11(6): 1673. Published online 2023 Jun 9. doi: 10.3390/biomedicines11061673
Teijeira A, Russo E, Halin C. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin Immunopathol . 2014;36:261–274.
Worbs T, Hammerschmidt S.I, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol . 2017;17:30–48.
William R Heath , Yu Kato , Thiago M Steiner , Irina Caminschi. Antigen presentation by dendritic cells for B cell activation. Curr Opin Immunol. 2019 Jun:58:44-52. doi: 10.1016/j.coi.2019.04.003. Epub 2019 May 6.
Claudia V. Jakubzick, Gwendalyn J. Randolph & Peter M. Henson. Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology volume 17, pages 349–362 (2017).
Blum J.S, Wearsch P.A, Cresswell P. Pathways of antigen processing. Ann Rev Immunol. 2013;31:443–473.
Babbitt B.P, Allen P.M, Matsueda G, et al. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature . 1985;317:359–361 (The first demonstration of the direct binding of antigenic peptides to MHC molecules.).La Gruta N.L, Gras S, Daley S.R, et al.
Rene C, Lozano C, Eliaou J.F. Expression of classical HLA class I molecules: regulation and clinical impacts—Julia Bodmer Award Review 2015. HLA . 2016;87 338–349.
Roche P.A, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol . 2015;15:203–216.
Petersdorf E.W, O’hUigin C. The MHC in the era of next-generation sequencing: implications for bridging structure with function. Hum Immunol . 2019;80:67–78.
Rossjohn J, Gras S, Miles J.J, et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol . 2015;33:169–200.
Maupin-Furlow, J., 2012. Proteasomes and protein conjugation across domains of life. Nat. Rev. Microbiol. 10 (2), 100–111.
Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity. Cell 124 (4), 783–801.
Adams, E.J., Luoma, A.M., 2013. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu. Rev. Immunol. 31 (1), 529–561.
Blander, J.M., 2016. The comings and goings of MHCclass I molecules herald a new dawn in cross-presentation. Immunol. Rev. 272 (1), 65–79.
Choi, N.M., Majumder, P., Boss, J.M., 2011. Regulation of major histocompatibility complex class II genes. Curr. Opin. Immunol. 23 (1), 81–87.
Pauwels, A.-M., et al., 2017. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38 (6), 407–422.
Jurewicz, M.M., Stern, L.J., 2019. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 71 (3), 171-187.
Mantegazza, A.R., et al., 2013. Presentation of phagocytosed antigens by MHC class I and II. Traffic 14 (2), 135–152
Paul, P., et al., 2011. A genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell 145 (2), 268–283.