Arbovirüsler ve Robovirüsler

Yazarlar

Özet

Arbovirüsler (arthropod-borneviruses) ve robovirüsler (rodent-borneviruses), insan ve hayvan sağlığı üzerinde önemli etkileri olan zoonotik hastalıkların etkenleridir. Arbovirüsler, sivrisinekler, keneler ve diğer eklem bacaklılar gibi vektörler aracılığıyla bulaşırken, robovirüsler kemirgenler tarafından yayılan virüslerdir. Örnek olarak, arbovirüsler Dang humması, Zika virüs enfeksiyonu, Chikungunya ve Batı Nil ateşi gibi hastalıkların etiyolojik ajanlarıdır; robovirüsler ise Hantavirüs ve Lassa ateşi gibi hastalıklara neden olmaktadır. Bu patojenler, vektörlerin ve kemirgenlerin yayılımıyla doğrudan ilişkilidir. Ekolojik ve iklim değişiklikleri, kentsel genişleme ve insan faaliyetleri bu yayılımı önemli ölçüde etkileyebilir. Son yıllarda küreselleşme ve artan seyahat, bu virüslerin yayılma potansiyelini artırmış ve salgın riskini daha da belirgin hale getirmiştir. Bu kitap bölümü, söz konusu patojenlerin temel özellikleri, bulaş yolları, epidemiyolojik dinamikleri ve halk sağlığına yönelik tehditleri üzerinde durmaktadır.

Referanslar

Al-Eitan L, Alnemri M, Alkhawaldeh M, et al. Rodent-borne viruses in the region of Middle East. Rev Med Virol. 2023;33(4): e2440.doi:10.1002/rmv.2440.

Dhanushkumar T, Selvam PK, Santhos ME, et al. Rational design of a multivalent vaccine targeting arthropod-borne viruses using reverse vaccinology strategies. Int J Biol Macromol. 2024;258(Pt 1):128753. doi: 10.1016/j.ijbiomac.2023.128753.

El Ghassem A, Abdoullah B, Deida J, et al. Arthropod-Borne Viruses in Mauritania: A Literature Review. Pathogens. 2023;12(11): 1370.doi:10.3390/pathogens12111370.

Hardgrove E, Zimmerman DM, von Fricken ME, et al. A scoping review of rodent-borne pathogen presence, exposure, and transmission at zoological institutions. Prev Vet Med. 2021; 193:105345. doi: 10.1016/j.prevetmed.2021.105345.

Meltzer E. Arboviruses and viral hemorrhagic fevers (VHF). Infect Dis Clin North Am. 2012;26(2):479-496. doi: 10.1016/j.idc.2012.02.003.

Xia H, Wang Y, Atoni E, et al. Mosquito-Associated Viruses in China. Virol Sin. 2018;33(1):5-20. doi:10.1007/s12250-018-0002-9.

Artsob H, Lindsay R, Drebot M. Arboviruses. In: Quah SR, editor.International Encyclopedia of Public Health (Second Edition). second edition ed. Oxford: Academic Press; 2017. p. 154–160.

Shahhosseini N, Wong G, Babuadze G, et al. Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms. 2021;9(9):1907. Published 2021 Sep 9. doi:10.3390/microorganisms9091907.

Flick R, Flick K, Feldmann H, et al. Reverse genetics for crimean-congo hemorrhagic fever virus. J Virol. 2003;77(10):5997-6006. doi:10.1128/jvi.77.10.5997-6006.2003.

Aslam S, Latif MS, Daud M, et al. Crimean-Congo hemorrhagic fever: Risk factors and control measures for the infection abatement. Biomed Rep. 2016;4(1):15-20. doi:10.3892/br.2015.545.

Büyüktuna SA, Doğan HO. Diagnosis, Prognosis and Clinical Trial in Crimean-Congo Hemorrhagic Fever. In: Ahmad, S.I. (eds) Human Viruses: Diseases, Treatments and Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-71165-8_11.

Temur AI, Kuhn JH, Pecor DB, et al. Epidemiology of Crimean-Congo Hemorrhagic Fever (CCHF) in Africa-Underestimated for Decades. Am J Trop Med Hyg. 2021;104(6):1978-1990. doi:10.4269/ajtmh.20-1413.

Gozel MG, Bakir M, Oztop AY, et al. Investigation of Crimean-Congo hemorrhagic fever virus transmission from patients to relatives: a prospective contact tracing study. Am J Trop Med Hyg. 2014;90(1):160-162. doi:10.4269/ajtmh.13-0306.

Tsergouli K, Karampatakis T, Haidich AB, et al. Nosocomial infections caused by Crimean-Congo haemorrhagic fever virus. J Hosp Infect. 2020;105(1):43-52. doi: 10.1016/j.jhin.2019.12.001.

Madison-Antenucci S, Kramer LD, Gebhardt LL, et al. Emerging Tick-Borne Diseases. Clin Microbiol Rev. 2020;33(2): e00083-18. doi:10.1128/CMR.00083-18.

Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203-214. doi:10.1016/S1473-3099(06)70435-2.

Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64(3):145-160. doi: 10.1016/j.antiviral.2004.08.001.

Zandi M, Rasooli A, Soltani S, et al. Biosensor-based methods for Crimean-Congo hemorrhagic fever virus detection. J Vector Borne Dis. 2021;58(4):383-385. doi:10.4103/0972-9062.328976.

Adams MJ, Lefkowitz EJ, King AMQ, et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Arch Virol. 2017;162(8):2505-2538. doi:10.1007/s00705-017-3358-5.

Raabe VN. Diagnostic Testing for Crimean-Congo Hemorrhagic Fever. J Clin Microbiol. 2020;58(4):e01580-19.. doi:10.1128/JCM.01580-19.

Wölfel R, Paweska JT, Petersen N, et al. Virus detection and monitoring of viral load in Crimean-Congo hemorrhagic fever virus patients. Emerg Infect Dis. 2007;13(7):1097-1100. doi:10.3201/eid1307.070068.

Mazzola LT, Kelly-Cirino C. Diagnostic tests for Crimean-Congo haemorrhagic fever: a widespread tickborne disease. BMJ Glob Health. 2019;4(Suppl 2): e001114.doi:10.1136/bmjgh-2018-001114.

Hawman DW, Feldmann H. Crimean-Congo haemorrhagic fever virus. Nat Rev Microbiol. 2023;21(7):463-477. doi:10.1038/s41579-023-00871-9.

Büyüktuna SA, Hasbek M, Öksüz C, et al. COVID-19 Co-infection in a patient with Crimean Congo Hemorrhagic Fever: A Case Report. Mikrobiyol Bul. 2021;55(3):445-451. doi:10.5578/mb.20219813.

Leblebicioglu H, Ozaras R, Fletcher TE, et al. Crimean-Congo haemorrhagic fever in travellers: A systematic review. Travel Med Infect Dis. 2016;14(2):73-80. doi: 10.1016/j.tmaid.2016.03.002.

Odigie AE, Stufano A, Schino V, et al. West Nile Virus Infection in Occupational Settings-A Systematic Review. Pathogens. 2024;13(2):157. doi:10.3390/pathogens13020157.

Garrigós M, Garrido M, Panisse G, et al. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens. 2023;12(11):1287. doi:10.3390/pathogens12111287.

Bampali M, Konstantinidis K, Kellis EE, et al. West Nile Disease Symptoms and Comorbidities: A Systematic Review and Analysis of Cases. Trop Med Infect Dis. 2022;7(9):236. doi:10.3390/tropicalmed7090236.

Petersen LR, Brault AC, Nasci RS. West Nile virus: review of the literatüre. JAMA. 2013;310(3):308-315. doi:10.1001/jama.2013.8042.

Hart J Jr, Tillman G, Kraut MA, et al. West Nile virus neuroinvasive disease: neurological manifestations and prospective longitudinal outcomes. BMC Infect Dis. 2014;14:248. doi:10.1186/1471-2334-14-248.

Sambri V, Capobianchi MR, Cavrini F, et al. Diagnosis of west nile virus human infections: overview and proposal of diagnostic protocols considering the results of external quality assessment studies. Viruses. 2013;5(10): 2329-2348.doi:10.3390/v5102329.

Sejvar JJ. Clinical manifestations and outcomes of West Nile virus infection. Viruses. 2014;6(2):606-623. doi:10.3390/v6020606.

Cendejas PM, Goodman AG. Vaccination and Control Methods of West Nile Virus Infection in Equids and Humans. Vaccines (Basel). 2024;12(5):485. doi:10.3390/vaccines12050485.

Mustafa MS, Rasotgi V, Jain S, et al. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67-70. doi: 10.1016/j.mjafi.2014.09.011.

Kok BH, Lim HT, Lim CP, et al. Dengue virus infection- a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res. 2023; 324:199018. doi: 10.1016/j.virusres.2022.199018.

Wahala WM, Silva AM. The human antibody response to dengue virus infection. Viruses. 2011;3(12):2374-2395. doi:10.3390/v3122374.

Carrington LB, Simmons CP. Human to mosquito transmission of dengue viruses. Front Immunol. 2014; 5:290. doi:10.3389/fimmu.2014.00290.

Tai AY, McGuinness SL, Robosa R, et al. Management of dengue in Australian travellers: a retrospective multicentre analysis. Med J Aust. 2017;206(7):295-300. doi:10.5694/mja16.01056.

Harapan H, Michie A, Sasmono RT, et al. Dengue: A Minireview. Viruses. 2020;12(8):829. doi:10.3390/v12080829.

Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: World Health Organization; 2009.

Wiwanitkit V. Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther. 2010;8(7):841-845. doi:10.1586/eri.10.53.

de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses. 2022;14(5):969. doi:10.3390/v14050969.

Deeba F, Islam A, Kazim SN, et al. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathog Dis. 2016;74(3): ftv119. doi:10.1093/femspd/ftv119.

Beltrán-Silva SL, Chacón-Hernández SS, Moreno-PalaciosE, et al. Clinical and differential diagnosis: Dengue, chikungunya and Zika." Revista Médica del Hospital General de México 81.3 (2018): 146-153. doi: 10.1016/j.hgmx.2016.09.011.

Noret M, Herrero L, Rulli N, et al. Interleukin 6, RANKL, and osteoprotegerin expression by chikungunya virus-infected human osteoblasts. J Infect Dis. 2012;206(3):457-459. doi:10.1093/infdis/jis368.

Andrew A, Navien TN, Yeoh TS, et al. Diagnostic accuracy of serological tests for the diagnosis of Chikungunya virus infection: A systematic review and meta-analysis. PLoS Negl Trop Dis. 2022;16(2): e0010152. doi: 10.1371/journal.pntd.0010152.

Bartholomeeusen K, Daniel M, LaBeaud DA, et al. Author Correction: Chikungunya fever. Nat Rev Dis Primers. 2023;9(1):26. doi:10.1038/s41572-023-00442-5.

Ferraris P, Yssel H, Missé D. Zika virus infection: an update. Microbes Infect. 2019;21(8-9):353-360. doi: 10.1016/j.micinf.2019.04.005.

Hamel R, Liégeois F, Wichit S, et al. Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect. 2016;18(7-8):441-449. doi: 10.1016/j.micinf.2016.03.009.

Pielnaa P, Al-Saadawe M, Saro A, et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology. 2020; 543:34-42. doi: 10.1016/j.virol.2020.01.015.

LaRocque RL, Ryan ET. Personal Actions to Minimize Mosquito-Borne Illnesses, Including Zika Virus. Ann Intern Med. 2016;165(8):589-590. doi:10.7326/M16-1397.

Modjarrad K, Lin L, George SL, et al. Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet. 2020;395(10241):1906. doi: 10.1016/S0140-6736(19)31427-8.

Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015; 64:160-173. doi: 10.1016/j.jcv.2014.08.030.

Gianchecchi E, Cianchi V, Torelli A, et al. Yellow Fever: Origin, Epidemiology, Preventive Strategies and Future Prospects. Vaccines (Basel). 2022;10(3):372. doi:10.3390/vaccines10030372

Domingo C, Charrel RN, Schmidt-Chanasit J, et al. Yellow fever in the diagnostics laboratory. Emerg Microbes Infect. 2018;7(1):129. doi:10.1038/s41426-018-0128-8.

Gibney KB, Edupuganti S, Panella AJ, et al. Detection of anti-yellow fever virus immunoglobulin m antibodies at 3-4 years following yellow fever vaccination. Am J Trop Med Hyg. 2012;87(6):1112-1115. doi:10.4269/ajtmh.2012.12-0182.

Bae HG, Nitsche A, Teichmann A, et al. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay. J Virol Methods. 2003;110(2):185-191. doi:10.1016/s0166-0934(03)00129-0.

Sbrana E, Xiao SY, Guzman H, et al. Efficacy of post-exposure treatment of yellow fever with ribavirin in a hamster model of the disease. Am J Trop Med Hyg. 2004;71(3):306-312. doi:10.4269/ajtmh.2004.71.306.

Mendes ÉA, Pilger DRB, Santos Nastri ACS, et al. Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure. Ann Hepatol. 2019;18(6):816-824. doi: 10.1016/j.aohep.2019.09.001.

World Health Organization. Regional Office for the Eastern Mediterranean. (‎2014)‎. Yellow fever. World Health Organization. Regional Office for the Eastern Mediterranean. https://iris.who.int/handle/10665/204192.

Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals (Basel). 2021;14(9):891. doi:10.3390/ph14090891.

Avšič-Županc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect. 2019;21S: e6-e16. doi:10.1111/1469-0691.12291.

Jiang H, Zheng X, Wang L, et al. Hantavirus infection: a global zoonotic challenge. Virol Sin. 2017;32(1):32-43. doi:10.1007/s12250-016-3899-x.

Vaheri A, Strandin T, Hepojoki J, et al. Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol. 2013;11(8):539-550. doi:10.1038/nrmicro3066.

Mattar S, Guzmán C, Figueiredo LT. Diagnosis of hantavirus infection in humans. Expert Rev Anti Infect Ther. 2015;13(8):939-946. doi:10.1586/14787210.2015.1047825.

Dheerasekara K, Sumathipala S, Muthugala R. Hantavirus Infections-Treatment and Prevention. Curr Treat Options Infect Dis. 2020;12(4):410-421. doi:10.1007/s40506-020-00236-3.

Krüger DH, Ulrich R, Lundkvist A A. Hantavirus infections and their prevention. Microbes Infect. 2001;3(13):1129-1144. doi:10.1016/s1286-4579(01)01474-5.

Asogun DA, Günther S, Akpede GO, et al. Lassa Fever: Epidemiology, Clinical Features, Diagnosis, Management and Prevention. Infect Dis Clin North Am. 2019;33(4):933-951. doi:10.1016/j.idc.2019.08.002.

Garry RF. Lassa fever- the road ahead. Nat Rev Microbiol. 2023;21(2):87-96. doi:10.1038/s41579-022-00789-8.

Efe UO, Edward EO, Chinaza AA, Emmanuella OC, et al. Lassa Fever: A Mini Review of Clinical Features, Diagnosis and Treatment. Asian J. Res. Infect. Dis. 2024;15(8):7-13. doi: 10.9734/ajrid/2024/v15i8363.

Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence. 2021;12(1):2989-3014. doi:10.1080/21505594.2021.2000290.

Sulis G, Peebles A, Basta NE. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop Med Int Health. 2023;28(6):420-431. doi:10.1111/tmi.13876.

Mofolorunsho KC. Outbreak of lassa fever in Nigeria: measures for prevention and control. Pan Afr Med J. 2016; 23:210. doi:10.11604/pamj.2016.23.210.8923.

Yayınlanan

7 Mart 2025

Lisans

Lisans