Pasteurella ve Francisella
Özet
Pasteurella ve Francisella cinsleri, Gammaproteobacteria sınıfına ait, fakültatif anaerop ve aerob özellikler gösteren gram-negatif bakterilerdir. Pasteurella türleri Pasteurellaceae, Francisella türleri ise Francisellaceae ailesine aittir. Bu bakteriler zoonotik enfeksiyonlara neden olur ve bazı türleri biyoterörizm açısından yüksek risk taşır.
Pasteurella cinsi içerisinde en yaygın tür olan P. multocida, özellikle kedi ve köpek ısırıkları sonrası gelişen yumuşak doku enfeksiyonlarının başlıca etkenidir. Francisella cinsinin en önemli üyesi F. tularensis, düşük enfeksiyon dozu nedeniyle oldukça virülandır ve tularemi hastalığının etkenidir.
Her iki bakteri grubu da özel kültür koşulları gerektirir ve çeşitli virülans faktörlerine sahiptir. Pasteurella’nın kapsül ve lipopolisakkarit yapısı patojeniteyi artırırken, Francisella’nın hücre içi hayatta kalma mekanizmaları enfeksiyonun şiddetini belirler. Tanıda kültür yöntemleri, PCR ve serolojik testler kullanılır. Tedavi için Pasteurella enfeksiyonlarında amoksisilin-klavulanik asit, Francisella enfeksiyonlarında ise aminoglikozidler tercih edilir.
Bu kitap bölümü, her iki patojenin mikrobiyolojik özelliklerini, epidemiyolojisini, klinik önemini ve laboratuvar tanısını detaylandırarak sağlık profesyonelleri için kapsamlı bir kaynak sunmaktadır.
Pasteurella and Francisella are gram-negative bacterial genera belonging to the class Gammaproteobacteria. Pasteurella species are classified under the Pasteurellaceae family, while Francisella species belong to the Francisellaceae family. These bacteria are zoonotic pathogens, with some species posing a significant bioterrorism risk.
Among the Pasteurella genus, P. multocida is the most common species, frequently causing soft tissue infections following cat and dog bites. In contrast, the most important Francisella species, F. tularensis, is a highly virulent pathogen responsible for tularemia, with a low infectious dose making it a serious public health concern.
Both genera require specific culture conditions and exhibit various virulence factors. The capsule and lipopolysaccharide structure of Pasteurella enhance its pathogenicity, whereas Francisella's intracellular survival mechanisms determine its infection severity. Diagnostic methods include culture techniques, PCR, and serological tests. Treatment options vary, with amoxicillin-clavulanate recommended for Pasteurella infections, while aminoglycosides are preferred for Francisella infections.
This book chapter provides a comprehensive overview of these pathogens, detailing their microbiological characteristics, epidemiology, clinical significance, and laboratory diagnostics, serving as a valuable resource for healthcare professionals.
Referanslar
Wilson BA, Ho M. Pasteurella multocida: from Zoonosis to Cellular Microbiology. Clinical Microbiology Reviews. 2022;26(3):631-655. doi:10.1128/CMR.00024-13
Sjöstedt A. Tularemia: History, Epidemiology, Pathogen Physiology, and Clinical Manifestations. Annals of the New York Academy of Sciences. 2020;1105:1-29.
Köhler W. The present state of species within the genera Streptococcus and Enterococcus. International Journal of Medical Microbiology. 2021;297(3):133-150.
Ellis J, Oyston PCF, Green M, Titball RW. Tularemia. Clinical Microbiology Reviews. 2022;15(4):631-646.
Harper M, Boyce JD, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters. 2021;265:1-10.
Christenson B. Clinical Aspects on Infections with Pasteurella multocida. Scandinavian Journal of Infectious Diseases. 2021;19:1-7.
Nørskov-Lauritsen N, Kilian M. Reclassification of Actinobacillus actinomycetemcomitans and Pasteurella species. International Journal of Systematic and Evolutionary Microbiology. 2021;56:2135-2146.
Chen HY, Sodhi M, Murray SR. Clinical Features of Pasteurella multocida Infection. Journal of Clinical Microbiology. 2021;15:235-239.
Maurin M, Gyuranecz M. Tularemia: Clinical Aspects in Europe. Vector Borne and Zoonotic Diseases. 2021;16(1):1-12.
Weber DJ, Hansen AR. Infections associated with animal bites. Infectious Disease Clinics of North America. 2021;25(4):755-770.
Petersen JM, Schriefer ME. Tularemia: emergence/re-emergence. Veterinary Research. 2021;42:7-12.
Xu, T., Zheng, Y., Liu, B., Kou, M., Jiang, Q., Liu, J., Kang, H., Yang, M., Guo, D., & Qu, L. (2023). Pmorf0222, a Virulence Factor in Pasteurella multocida, Activates Nuclear Factor Kappa B and Mitogen-Activated Protein Kinase via Toll-Like Receptor 1/2. Infection and immunity, 91(1), e0019322. https://doi.org/10.1128/iai.00193-22
Chatelier, E., Mahieu, R., Hamel, J. F., Chenouard, R., Lozac'h, P., Sallé, A., Kouatchet, A., Martin, L., Lavigne, C., Pailhoriès, H., & Urbanski, G. (2020). Pasteurella bacteraemia: Impact of comorbidities on outcome, based on a case series and literature review. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 92, 89–96. https://doi.org/10.1016/j.ijid.2020.01.003
Porter, Randall S., Hay, Christine M., Pasteurella Endocarditis: A Case Report and Statistical Analysis of the Literature, Case Reports in Infectious Diseases, 2020, 8890211, 10 pages, 2020.
Benga, L., Sager, M., & Christensen, H. (2018). From the [Pasteurella] pneumotropica complex to Rodentibacter spp.: an update on [Pasteurella] pneumotropica.. Veterinary microbiology, 217, 121-134 . https://doi.org/10.1016/j.vetmic.2018.03.011.
16 -Qiu, R., Wei, H., Hu, B., Chen, M., Song, Y., Xu, W., Fan, Z., & Wang, F. (2022). Experimental pathogenicity and comparative genome analysis of high- and low-virulence strains of rabbit-origin Pasteurella multocida.. Comparative immunology, microbiology and infectious diseases, 90-91, 101889 . https://doi.org/10.2139/ssrn.4139002.
Hurtado, R., Maturrano, L., Azevedo, V., & Aburjaile, F. (2020). Pathogenomics insights for understanding Pasteurella multocida adaptation.. International journal of medical microbiology : IJMM, 151417 . https://doi.org/10.1016/j.ijmm.2020.151417.
Újvári, B., Makrai, L., & Magyar, T. (2019). Virulence gene profiling and ompA sequence analysis of Pasteurella multocida and their correlation with host species.. Veterinary microbiology, 233, 190-195 https://doi.org/10.1016/J.VETMIC.2019.05.005.
Wilson, B., & Ho, M. (2013). Pasteurella multocida: from Zoonosis to Cellular Microbiology. Clinical Microbiology Reviews, 26, 631 - 655. https://doi.org/10.1128/CMR.00024-13.
Alifragki, A., Kontogianni, A., Protopapa, I., Baliou, S., & Ioannou, P. (2022). Infective Endocarditis by Pasteurella Species: A Systematic Review. Journal of Clinical Medicine, 11. https://doi.org/10.3390/jcm11175037.
Barut S, Çetin I. A Tularemia outbreak in an extended family in Tokat Province, Turkey. International Journal of Infectious Diseases. 2021;13:745-748.
Brook I. Management of human and animal bite wound infection. Primary Care. 2021;30:25-39.
Mahony, M., Menouhos, D., Hennessy, J., & Baird, R. (2023). Spectrum of human Pasteurella species infections in tropical Australia. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0281164.
Alifragki, A., Kontogianni, A., Protopapa, I., Baliou, S., & Ioannou, P. (2022). Infective Endocarditis by Pasteurella Species: A Systematic Review. Journal of Clinical Medicine, 11. https://doi.org/10.3390/jcm11175037.
Chatelier, E., Mahieu, R., Hamel, J., Chenouard, R., Lozac’h, P., Sallé, A., Kouatchet, A., Martin, L., Lavigne, C., Pailhoriès, H., & Urbanski, G. (2020). Pasteurella bacteraemia: impact of comorbidities on outcome, based on a case series and literature review.. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.01.003.
Dziva, F., Muhairwa, A., Bisgaard, M., & Christensen, H. (2008). Diagnostic and typing options for investigating diseases associated with Pasteurella multocida.. Veterinary microbiology, 128 1-2, 1-22 . https://doi.org/10.1016/J.VETMIC.2007.10.018.
Porter, R., & Hay, C. (2020). Pasteurella Endocarditis: A Case Report and Statistical Analysis of the Literature. Case Reports in Infectious Diseases, 2020. https://doi.org/10.1155/2020/8890211.
Guion, T., & Sculco, T. (1992). Pasteurella multocida infection in total knee arthroplasty. Case report and literature review.. The Journal of arthroplasty, 7 2, 157-60 . https://doi.org/10.1016/0883-5403(92)90009-F.
Hurtado, R., Maturrano, L., Azevedo, V., & Aburjaile, F. (2020). Pathogenomics insights for understanding Pasteurella multocida adaptation.. International journal of medical microbiology : IJMM, 151417 . https://doi.org/10.1016/j.ijmm.2020.151417.
Holst, E., Rollof, J., Larsson, L., & Nielsen, J. (1992). Characterization and distribution of Pasteurella species recovered from infected humans. Journal of Clinical Microbiology, 30, 2984 - 2987. https://doi.org/10.1128/jcm.30.11.2984-2987.1992.
McLendon, M., Apicella, M., & Allen, L. (2006). Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare.. Annual review of microbiology, 60, 167-85 . https://doi.org/10.1146/ANNUREV.MICRO.60.080805.142126.
Bachert, B., & Bozue, J. (2023). Peptidoglycan enzymes of Francisella: Roles in cell morphology and pathogenesis, and potential as therapeutic targets. Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2022.1099312.
Zellner, B., Mengin-Lecreulx, D., Tully, B., Gunning, W., Booth, R., & Huntley, J. (2020). A Francisella tularensis L,D-carboxypeptidase plays important roles in cell morphology, envelope integrity, and virulence. bioRxiv. https://doi.org/10.1101/817593.
Gann, P., Rozak, D., Nikolich, M., Bowden, R., Lindler, L., Wolcott, M., & Lathigra, R. (2010). A novel brain heart infusion broth supports the study of common Francisella tularensis serotypes.. Journal of microbiological methods, 80 2, 164-71 . https://doi.org/10.1016/j.mimet.2009.12.005.
Ottem, K., Nylund, A., Karlsbakk, E., Friis-Møller, A., & Krossøy, B. (2007). Characterization of Francisella sp., GM2212, the first Francisella isolate from marine fish, Atlantic cod (Gadus morhua). Archives of Microbiology, 187, 343-350. https://doi.org/10.1007/s00203-006-0198-1.
Raynaud, C., Meibom, K., Lety, M., Dubail, I., Candela, T., Frapy, E., & Charbit, A. (2006). Role of the wbt Locus of Francisella tularensis in Lipopolysaccharide O-Antigen Biogenesis and Pathogenicity. Infection and Immunity, 75, 536 - 541. https://doi.org/10.1128/IAI.01429-06.
Raynaud, C., Meibom, K., Lety, M., Dubail, I., Candela, T., Frapy, E., & Charbit, A. (2006). Role of the wbt Locus of Francisella tularensis in Lipopolysaccharide O-Antigen Biogenesis and Pathogenicity. Infection and Immunity, 75, 536 - 541. https://doi.org/10.1128/IAI.01429-06.
Ramsey, K., Ledvina, H., Tresko, T., Wandzilak, J., Tower, C., Tallo, T., Schramm, C., Peterson, S., Skerrett, S., Mougous, J., & Dove, S. (2020). Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in Francisella tularensis. PLoS Pathogens, 16. https://doi.org/10.1371/journal.ppat.1008566.
Ziveri, J., Barel, M., & Charbit, A. (2017). Importance of Metabolic Adaptations in Francisella Pathogenesis. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00096.
Wang, Y., Ledvina, H., Tower, C., Kambarev, S., Liu, E., Charity, J., Kreuk, L., Chen, Q., Gallagher, L., Radey, M., Rerolle, G., Li, Y., Penewit, K., Turkarslan, S., Skerrett, S., Salipante, S., Baliga, N., Woodward, J., Dove, S., Peterson, S., Celli, J., & Mougous, J. (2023). Discovery of a unique pathway for glutathione utilization in Francisella. bioRxiv. https://doi.org/10.1101/2023.02.02.526638.
Becker, S., Lochau, P., Jacob, D., Heuner, K., & Grunow, R. (2016). Successful re-evaluation of broth medium T for growth of Francisella tularensis ssp. and other highly pathogenic bacteria.. Journal of microbiological methods, 121, 5-7 . https://doi.org/10.1016/j.mimet.2015.11.018.
Gann, P., Rozak, D., Nikolich, M., Bowden, R., Lindler, L., Wolcott, M., & Lathigra, R. (2010). A novel brain heart infusion broth supports the study of common Francisella tularensis serotypes.. Journal of microbiological methods, 80 2, 164-71 . https://doi.org/10.1016/j.mimet.2009.12.005.
Morris, B., Buse, H., Adcock, N., & Rice, E. (2017). A novel broth medium for enhanced growth of Francisella tularensis. Letters in Applied Microbiology, 64. https://doi.org/10.1111/lam.12725.
Petersen, J., Schriefer, M., Gage, K., Montenieri, J., Carter, L., Stanley, M., & Chu, M. (2004). Methods for Enhanced Culture Recovery of Francisella tularensis. Applied and Environmental Microbiology, 70, 3733 - 3735. https://doi.org/10.1128/AEM.70.6.3733-3735.2004.
Mekonnen, E., Kebede, A., Tafesse, T., & Tafesse, M. (2019). Investigation of carbon substrate utilization patterns of three ureolytic bacteria. Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2019.101429.
Lundström, J., Andersson, A., Bäckman, S., Schäfer, M., Forsman, M., & Thelaus, J. (2011). Transstadial Transmission of Francisella tularensis holarctica in Mosquitoes, Sweden. Emerging Infectious Diseases, 17, 794 - 799. https://doi.org/10.3201/eid1705.100426.
Molins, C., Delorey, M., Yockey, B., Young, J., Sheldon, S., Reese, S., Schriefer, M., & Petersen, J. (2010). Virulence Differences Among Francisella tularensis Subsp. tularensis Clades in Mice. PLoS ONE, https://doi.org/10.1371/journal.pone.0010205.
Petrosino, J., Xiang, Q., Karpathy, S., Jiang, H., Yerrapragada, S., Liu, Y., Gioia, J., Hemphill, L., González, A., Raghavan, T., Uzman, A., Fox, G., Highlander, S., Reichard, M., Morton, R., Clinkenbeard, K., & Weinstock, G. (2006). Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence. Journal of Bacteriology, 188, 6977 - 6985. https://doi.org/10.1128/JB.00506-06.
Byström, M., Böcher, S., Magnusson, A., Prag, J., & Johansson, A. (2005). Tularemia in Denmark: Identification of a Francisella tularensis subsp. holarctica Strain by Real-Time PCR and High-Resolution Typing by Multiple-Locus Variable-Number Tandem Repeat Analysis. Journal of Clinical Microbiology, 43, 5355 - 5358. https://doi.org/10.1128/JCM.43.10.5355-5358.2005.
Kugeler, K., Mead, P., Janusz, A., Staples, J., Kubota, K., Chalcraft, L., & Petersen, J. (2009). Molecular Epidemiology of Francisella tularensis in the United States.. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 48 7, 863-70 . https://doi.org/10.1086/597261.
Barker, J., Chong, A., Wehrly, T., Yu, J., Rodriguez, S., Liu, J., Celli, J., Arulanandam, B., & Klose, K. (2009). The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Molecular Microbiology, 74. https://doi.org/10.1111/j.1365-2958.2009.06947.x.
Bröms, J., Meyer, L., Lavander, M., Larsson, P., & Sjöstedt, A. (2012). DotU and VgrG, Core Components of Type VI Secretion Systems, Are Essential for Francisella LVS Pathogenicity. PLoS ONE, https://doi.org/10.1371/journal.pone.0034639.
(1992). Retrospective analysis of platelet serology investigations performed in 1990 by twenty laboratories belonging to the "Cooperative Group for the Study of Platelet Immunology".. Haematologica, 77 1, 35-9 .
Michael, G., Bossé, J., & Schwarz, S. (2018). Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin.. Microbiology spectrum, 6 3. https://doi.org/10.1128/microbiolspec.ARBA-0022-2017.
Ziveri, J., Barel, M., & Charbit, A. (2017). Importance of Metabolic Adaptations in Francisella Pathogenesis. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00096.
Nguyen, J., Gilley, R., Zogaj, X., Rodriguez, S., & Klose, K. (2014). Lipidation of the FPI protein IglE contributes to Francisella tularensis ssp. novicida intramacrophage replication and virulence.. Pathogens and disease, 72 1, 10-8 . https://doi.org/10.1111/2049-632X.12167.
Bröms, J., Sjöstedt, A., & Lavander, M. (2010). The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Frontiers in Microbiology, 1. https://doi.org/10.3389/fmicb.2010.00136.
Degner, N., Galvan-Castillo, R., Alexander, J., Arun, A., De Vries, C., MacIntyre, A., Perkins, B., Ahmed, A., & Smollin, M. (2021). 1030. Chasing the Long Tail of Infectious Diseases: Detecting Capnocytophaga canimorsus and Pasteurella multocida Infections with A Plasma-based Microbial Cell-Free DNA Next Generation Sequencing Test. Open Forum Infectious Diseases, 8, 605 - 606. https://doi.org/10.1093/ofid/ofab466.1224.
Dole, V., Banu, L., Fister, R., Nicklas, W., & Henderson, K. (2010). Assessment of rpoB and 16S rRNA genes as targets for PCR-based identification of Pasteurella pneumotropica.. Comparative medicine, 60 6, 427-35
Owen, C., Buker, E., Jellison, W., Lackman, D., & Bell, J. (1964). COMPARATIVE STUDIES OF FRANCISELLA TULARENSIS AND FRANCISELLA NOVICIDA. Journal of Bacteriology, 87, 676 - 683. https://doi.org/10.1128/jb.87.3.676-683.1964.
Carter, G. (1990). Pasteurella and Francisella. , 129-142. https://doi.org/10.1016/B978-0-12-161775-2.50015-3.
Alifragki, A., Kontogianni, A., Protopapa, I., Baliou, S., & Ioannou, P. (2022). Infective Endocarditis by Pasteurella Species: A Systematic Review. Journal of Clinical Medicine, 11. https://doi.org/10.3390/jcm11175037.
Malik, S., Paul, V., Damodaran, T., Prabakhar, D., Khan, A., & Ahmad, S. (2021). 648. Rapid, Non-invasive Detection of Cryptic Tularemia Using a Plasma-Based Microbial Cell-Free DNA Next-Generation Sequencing Test. Open Forum Infectious Diseases. https://doi.org/10.1093/ofid/ofab466.845.