Nöroimmünolojik Hastalıklarda İmmün Sistem ve İnflamatuar Mekanizmalar

Özet

Referanslar

Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

Cromheecke J, KT N, Huston D. Emerging Role of Human Basophil Biology in Health and Disease. Curr Allergy Asthma Rep. 2014;14:408.

Diny NL, Rose NR, Čiháková D. Eosinophils in autoimmune diseases. Front Immunol. 2017;8:1–19.

Murphy KP, Murphy KM, Walport M, Janeway C. Janeway’s Immunobiology. New York: Garland Science.; 2017.

Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov [Internet]. Nature Publishing Group; 2013;12:117–29. Available from: http://dx.doi.org/10.1038/nrd3838

Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology (10th ed.). Philadelphia: Saunders Elsevier.; 2021.

Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, et al. The role of neutrophils in neuro-immune modulation. Pharmacol Res. Academic Press; 2020;151.

Dantas LR, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, et al. Dendritic cells: Neglected modulators of peripheral immune responses and neuroinflammation in mood disorders? Cells. 2021;10:1–28.

Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA. Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 2017;79:119–33.

Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

Wang S, van de Pavert SA. Innate Lymphoid Cells in the Central Nervous System. Front Immunol. 2022;13:1–10.

Klose CSN, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, D’Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6-RORγt + innate lymphoid cells. Nature. 2013;494:261–5.

Haabeth OAW, Lorvik KB, Hammarström C, Donaldson IM, Haraldsen G, Bogen B, et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 2011;2.

Mjösberg JM, Trifari S, Crellin NK, Peters CP, Van Drunen CM, Piet B, et al. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.

Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med [Internet]. Springer US; 2021;53:1251–67. Available from: http://dx.doi.org/10.1038/s12276-021-00660-5

Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464:1371–5.

Han L, Wang X miao, Di S, Gao Z zheng, Li Q wei, Wu H ran, et al. Innate lymphoid cells: A link between the nervous system and microbiota in intestinal networks. Mediators Inflamm. Hindawi Limited; 2019;2019.

Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunol. 2021;10:1–17.

Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett. Elsevier; 2020;222:1–11.

Provine NM, Klenerman P. MAIT Cells in Health and Disease. Annu Rev Immunol. Annual Reviews Inc.; 2020;38:203–28.

Chiba A, Murayama G, Miyake S. Mucosal-associated invariant T cells in autoimmune diseases. Front Immunol. 2018;9:1–9.

Park JH, Kang I, Lee HK. γδ T Cells in Brain Homeostasis and Diseases. Front Immunol. 2022;13:1–15.

Cui Y, Wan Q. NKT cells in neurological diseases. Front Cell Neurosci. Frontiers Media S.A.; 2019;13:245.

Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation. BioMed Central Ltd; 2020;17.

Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol [Internet]. Frontiers Media SA; 2019 [cited 2023 Feb 5];10:362. Available from: /pmc/articles/PMC6409326/

Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol [Internet]. Springer US; 2020;16:601–17. Available from: http://dx.doi.org/10.1038/s41582-020-0400-0

Luckheeram RV, Zhou R, Verma AD, Xia B. CD4 +T cells: Differentiation and functions. Clin Dev Immunol. 2012;2012.

Durali D, De Goër De Herve MG, Giron-Michel J, Azzarone B, Delfraissy JF, Taoufik Y. In human B cells, IL-12 triggers a cascade of molecular events similar to Th1 commitment. Blood. 2003;102:4084–9.

Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature [Internet]. Nature; 1985 [cited 2023 Feb 8];314:537–9. Available from: https://pubmed.ncbi.nlm.nih.gov/3157869/

Delves PJ, Roitt IM. The Immune System (First of Two Parts). N Engl J Med. 2000;343:1132–1132.

Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med [Internet]. 2000;343:108–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10891520

Petrie HT, Zúñiga-Pflücker JC. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol. 2007;25:649–79.

Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med. 2020;217:1–10.

Parham P. The Immune System. 3rd ed. Garland Science; 2019.

Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. ImmunoTargets Ther. 2015;111.

Howland KC, Ausubel LJ, London CA, Abbas AK. The Roles of CD28 and CD40 Ligand in T Cell Activation and Tolerance. J Immunol. 2000;164:4465–70.

Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: Naïve to memory and everything in between. Am J Physiol - Adv Physiol Educ. 2013;37:273–83.

Curtsinger J, Mescher M. Inflammatory Cytokines as a Third Signal for T Cell Activation. Curr Opin Immunol. 2010;3:333-340.

Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10:1–8.

Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science (80- ). 1993;260:547–9.

Pilli D, Zou A, Tea F, Dale RC, Brilot F. Expanding role of T cells in human autoimmune diseases of the central nervous system. Front Immunol. Frontiers Media S.A.; 2017;8.

Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–50.

Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity. 1996;4:313–9.

Lindell DM, Berlin AA, Schaller MA, Lukacs NW. B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One. 2008;3.

Littman DR, Rudensky AY. Th17 and Regulatory T Cells in Mediating and Restraining Inflammation. Cell [Internet]. Elsevier Inc.; 2010;140:845–58. Available from: http://dx.doi.org/10.1016/j.cell.2010.02.021

Manel N, Unutmaz D, Littman DR. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat Immunol. 2008;9:641–9.

Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol. 2006;18:349–56.

Yang XO, Panopoulos AD, Nurieva R, Seon HC, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem [Internet]. © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.; 2007;282:9358–63. Available from: http://dx.doi.org/10.1074/jbc.C600321200

Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, et al. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol. 2021;12:1–14.

Baba N, Rubio M, Kenins L, Regairaz C, Woisetschlager M, Carballido JM, et al. The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naïve CD4+ Th cells to promote the development of IL-22-secreting Th cells. Hum Immunol [Internet]. American Society for Histocompatibility and Immunogenetics; 2012;73:795–800. Available from: http://dx.doi.org/10.1016/j.humimm.2012.05.002

Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. Nature Publishing Group; 2009;10:857–63.

Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat Immunol. Nature Publishing Group; 2009;10:864–71.

Josefowicz S, Lu L, Rudensky A. Regulatory T Cells: Mechanisms of Differentiation and Function. Annu Rev Immunol. 2012;30:531–564.

Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123:758–62.

Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rivera GOR, Arhontoulis DC, et al. Fueling cancer immunothery with common gamma chain cytokines. Front Immunol. 2019;10:1–18.

Attias M, Al-Aubodah T, Piccirillo CA. Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Clin Exp Immunol. 2019;197:36–51.

Murúa SR, Farez MF, Quintana FJ. The Immune Response in Multiple Sclerosis. Annu Rev Pathol Mech Dis. 2021;17:121–39.

Pierson ER, Wagner CA, Goverman JM. The contribution of neutrophils to CNS autoimmunity. Clin Immunol [Internet]. Elsevier B.V.; 2018;189:23–8. Available from: http://dx.doi.org/10.1016/j.clim.2016.06.017

Ruppova K, Lim JH, Fodelianaki G, August A, Neuwirth A. Eosinophils are dispensable for development of MOG35–55-induced experimental autoimmune encephalomyelitis in mice. Immunol Lett. Elsevier B.V.; 2021;239:72–6.

Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord [Internet]. Elsevier; 2016;5:77–80. Available from: http://dx.doi.org/10.1016/j.msard.2015.11.005

Ibrahim MZM, Reder AT, Lawand R, Takash W, Sallouh-Khatib S. The mast cells of the multiple sclerosis brain. J Neuroimmunol. 1996;70:131–8.

Russi AE, Walker-Caulfield ME, Brown MA. Mast cell inflammasome activity in the meninges regulates EAE disease severity. Clin Immunol [Internet]. Academic Press Inc.; 2018 [cited 2023 Feb 8];189:14–22. Available from: https://www.scholars.northwestern.edu/en/publications/mast-cell-inflammasome-activity-in-the-meninges-regulates-eae-dis

Russi AE, Walker-Caulfield ME, Guo Y, Lucchinetti CF, Brown MA. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun. Academic Press; 2016;73:100–10.

Christy AL, Walker ME, Hessner MJ, Brown MA. Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun. 2013;42:50–61.

Costanza M, Colombo MP, Pedotti R. Mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci. MDPI AG; 2012;13:15107–25.

Eken A, Yetkin MF, Vural A, Okus FZ, Erdem S, Azizoglu ZB, et al. Fingolimod alters tissue distribution and cytokine production of human and murine innate lymphoid cells. Front Immunol. 2019;10:1–12.

Romero-Suárez S, Del Rio Serrato A, Bueno RJ, Brunotte-Strecker D, Stehle C, Figueiredo CA, et al. The Central Nervous System Contains ILC1s That Differ From NK Cells in the Response to Inflammation. Front Immunol. Frontiers Media S.A.; 2019;10.

Hatfield JK, Brown MA. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol [Internet]. Elsevier Inc.; 2015;297:69–79. Available from: http://dx.doi.org/10.1016/j.cellimm.2015.06.006

Hao J, Liu R, Piao W, Zhou Q, Vollmer TL, Campagnolo DI, et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med. 2010;207:1907–21.

Zhang BN, Yamamura T, Kondo T, Fujiwara M, Tabira T. Regulation of Experimental Autoimmune Encephalomyelitis by Natural Killer (NK) Cells. J Exp Med [Internet]. The Rockefeller University Press; 1997 [cited 2023 Feb 8];186:1677. Available from: /pmc/articles/PMC2199138/

Singh AK, Wilson MT, Hong S, Olivares-Villagómez D, Du C, Stanic AK, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med. 2001;194:1801–11.

Teige A, Teige I, Lavasani S, Bockermann R, Mondoc E, Holmdahl R, et al. CD1-Dependent Regulation of Chronic Central Nervous System Inflammation in Experimental Autoimmune Encephalomyelitis. J Immunol. 2004;172:186–94.

Wo J, Zhang F, Li Z, Sun C, Zhang W, Sun G. The Role of Gamma-Delta T Cells in Diseases of the Central Nervous System. Front Immunol. 2020;11:1–10.

Odyniec A, Szczepanik M, Mycko MP, Stasiolek M, Raine CS, Selmaj KW. γδ T Cells Enhance the Expression of Experimental Autoimmune Encephalomyelitis by Promoting Antigen Presentation and IL-12 Production. J Immunol [Internet]. American Association of Immunologists; 2004 [cited 2023 Feb 8];173:682–94. Available from: https://journals.aai.org/jimmunol/article/173/1/682/73002/T-Cells-Enhance-the-Expression-of-Experimental

Schirmer L, Rothhammer V, Hemmer B, Korn T. Enriched CD161high CCR6+ γδ T Cells in the Cerebrospinal Fluid of Patients With Multiple Sclerosis. JAMA Neurol [Internet]. American Medical Association; 2013 [cited 2023 Feb 8];70:345–51. Available from: https://jamanetwork.com/journals/jamaneurology/fullarticle/1485847

Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, et al. Dendritic cells in brain diseases. Biochim Biophys Acta - Mol Basis Dis [Internet]. Elsevier B.V.; 2016 [cited 2023 Feb 5];3:352–67. Available from: https://www.infona.pl//resource/bwmeta1.element.elsevier-4ea6b36f-a43e-325f-8b38-abaa960e7f63

Isaksson M, Lundgren BA, Ahlgren KM, Kämpe O, Lobell A. Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur J Immunol [Internet]. John Wiley & Sons, Ltd; 2012 [cited 2023 Feb 5];42:2555–63. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/eji.201142239

Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med. 2005;11:328–34.

Yogev N, Frommer F, Lukas D, Kautz-Neu K, Karram K, Ielo D, et al. Dendritic cells ameliorate autoimmunity in the cns by controlling the homeostasis of PD-1 receptor+ regulatory T cells. Immunity. 2012;37:264–75.

Jarius S, Pellkofer H, Siebert N, Korporal-Kuhnke M, Hümmert MW, Ringelstein M, et al. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: Results from 163 lumbar punctures in 100 adult patients. J Neuroinflammation. Journal of Neuroinflammation; 2020;17:1–26.

Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain [Internet]. Brain; 2002 [cited 2023 Feb 6];125:1450–61. Available from: https://pubmed.ncbi.nlm.nih.gov/12076996/

Zhang H, Verkman AS. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J Clin Invest. 2013;123:2306–16.

Popescu BFG, Lennon VA, Parisi JE, Howe CL, Weigand SD, Cabrera-Gómez JA, et al. Neuromyelitis optica unique area postrema lesions: Nausea, vomiting, and pathogenic implications. Neurology. 2011;76:1229–37.

Wang Z, Yan Y. Immunopathogenesis in myasthenia gravis and neuromyelitis optica. Front Immunol. 2017;8:1–14.

Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol. 2012;71:323–33.

Asavapanumas N, Ratelade J, Verkman AS. Unique neuromyelitis optica pathology produced in naïve rats by intracerebral administration of NMO-IgG. Acta Neuropathol. Springer Verlag; 2014;127:539–51.

Kong Y, Li HD, Wang D, Gao X, Yang C, Li M, et al. Group 2 innate lymphoid cells suppress the pathology of neuromyelitis optica spectrum disorder. FASEB J. John Wiley and Sons Inc; 2021;35.

Khani L, Jazayeri MH, Nedaeinia R, Bozorgmehr M, Nabavi SM, Ferns GA. The frequencies of peripheral blood CD5+CD19+ B cells, CD3−CD16+CD56+ NK, and CD3+CD56+ NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. Allergy, Asthma Clin Immunol [Internet]. BioMed Central; 2022;18:1–10. Available from: https://doi.org/10.1186/s13223-021-00596-5

Yandamuri SS, Jiang R, Sharma A, Cotzomi E, Zografou C, Ma AK, et al. High-throughput investigation of molecular and cellular biomarkers in NMOSD. Neurol Neuroimmunol neuroinflammation. NLM (Medline); 2020;7.

Fichtner ML, Jiang R, Bourke A, Nowak RJ, O’Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol. 2020;11.

Raica M, Cîmpean AM, Encicǎ S, Scridon T, Bârsan M. Increased mast cell density and microvessel density in the thymus of patients with myasthenia gravis. Rom J Morphol Embryol. 2007;48:11–6.

Liu R, La Cava A, Bai X-F, Jee Y, Price M, Campagnolo DI, et al. Cooperation of Invariant NKT Cells and CD4 + CD25 + T Regulatory Cells in the Prevention of Autoimmune Myasthenia . J Immunol. The American Association of Immunologists; 2005;175:7898–904.

Keller CW, Lopez JA, Wendel EM, Ramanathan S, Gross CC, Klotz L, et al. Complement Activation Is a Prominent Feature of MOGAD. Ann Neurol. 2021;90:976–82.

Grebenciucova E, Rezania K. Inflammatory Disorders of the Nervous System. Inflamm Disord Nerv Syst. 2017;1–6.

Shen D, Chu F, Lang Y, Geng Y, Zheng X, Zhu J, et al. Beneficial or harmful role of macrophages in Guillain-Barré syndrome and experimental autoimmune neuritis. Mediators Inflamm. Hindawi; 2018;2018.

Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64:109–27.

Nyati KK, Prasad KN, Rizwan A, Verma A, Paliwal VK. TH1 and TH2 response to Campylobacter jejuni antigen in Guillain-Barre syndrome. Arch Neurol. 2011;68:445–52.

Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, et al. The immunopathogenesis of alzheimer’s disease is related to the composition of gut microbiota. Nutrients. 2021;13:1–34.

Zhu B, Yin D, Zhao H, Zhang L. The immunology of Parkinson’s disease. Semin Immunopathol [Internet]. Springer Berlin Heidelberg; 2022;44:659–72. Available from: https://doi.org/10.1007/s00281-022-00947-3

Jorfi M, Park J, Hall CK, Lin CCJ, Chen M, von Maydell D, et al. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat Neurosci. 2023;26:1489–504.

Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol. Academic Press Inc.; 2018;189:29–33.

Inoue M, Yagishita S, Itoh Y, Koyano S, Amano N, Matsushita M. Eosinophilic bodies in the cerebral cortex of Alzheimer’s disease cases. Acta Neuropathol. 1996;92:555–61.

Prasad Gabbita S, Johnson MF, Kobritz N, Eslami P, Poteshkina A, Varadarajan S, et al. Oral TNFα modulation alters neutrophil infiltration, improves cognition and diminishes tau and amyloid pathology in the 3xtgad mouse model. PLoS One. 2015;10:1–28.

Muzio L, Viotti A, Martino G. Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Front Neurosci. 2021;15.

Zhao M, Cribbs DH, Anderson AJ, Cummings BJ, Su JH, Wasserman AJ, et al. The induction of the TNFα death domain signaling pathway in Alzheimer’s disease brain. Neurochem Res. 2003;28:307–18.

Fu AKY, Hung KW, Yuen MYF, Zhou X, Mak DSY, Chan ICW, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A. National Academy of Sciences; 2016;113:E2705–13.

Yayınlanan

4 Nisan 2025

Lisans

Lisans