Vitamin Metabolizma Bozuklukları ve Görüntüleme Bulguları
Özet
Referanslar
Haimi, M. Nutritional deficiencies in the pediatric age group in a multicultural developed country, Israel. World J. Clin. Cases 2, 120 (2014).
Ramirez, E. L., Gibson, J. B. & Kristina, J. Vitamin-Dependent Genetic Disorders of Childhood.
Erdal Engin, A. & Kasapkara, Ç. S. Vitaminlerin Özellikleri. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) 1–12 (Türkiye Klinikleri, 2023).
Kathleen M Fairfield, MD, DrPHChristine C Tangney, PhDRobert S Rosenson, M. Vitamin intake and disease prevention. uptodate https://www.uptodate.com/contents/vitamin-intake-and-disease-prevention?search=vitaminler&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1.
Pektaş, E. Vitamin B Kompleksi. in Yurdakök Pediatri (ed. Yurdakök, M.) 1523–1532 (Güneş Tıp Kitabevleri, 2017).
Basan, H. & Gürbüz, B. B. Tiamin Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara Çiğdem Seher) 21–27 (Türkiye Klinikleri, 2023).
Smith, T. J. et al. Thiamine deficiency disorders: a clinical perspective. Ann. N. Y. Acad. Sci. 1498, 9–28 (2021).
Whitfield, K. C. et al. Thiamine deficiency disorders: diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 1430, 3–43 (2018).
Brown Garry, P. B. Disorders of Thiamine and Pyridoxine Metabolism. in ınborn metabolic Diseases: Diagnosis and Treatment. (ed. Saudubray JM) 531–545 (2022).
Kassem, H., Wafaie, A., Alsuhibani, S. & Farid, T. Biotin-responsive basal ganglia disease: neuroimaging features before and after treatment. AJNR. Am. J. Neuroradiol. 35, 1990–1995 (2014).
Alfadhel M, N. M. Thiamine disorders. in Physician’s Guide to the Diagnosis, Treatment, and Follow-up of ınherited metabolic Diseases (ed. Blau, N.) 537–546 (Springer International Publishing, 2022).
Spiegel, R. et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann. Neurol. 66, 419–424 (2009).
Li, X. et al. Case report of two affected siblings in a family with thiamine metabolism dysfunction syndrome 5: a rare, but treatable neurodegenerative disease. BMC Neurol. 22, (2022).
Banka, S. et al. Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations. Mol. Genet. Metab. 113, 301–306 (2014).
Jauhari, P., Sankhyan, N., Vyas, S. & Singhi, P. Thiamine Responsive Pyruvate Dehydrogenase Complex Deficiency: A Potentially Treatable Cause of Leigh’s Disease. J. Pediatr. Neurosci. 12, 265–267 (2017).
van Dongen, S., Brown, R. M., Brown, G. K., Thorburn, D. R. & Boneh, A. Thiamine-Responsive and Non-responsive Patients with PDHC-E1 Deficiency: A Retrospective Assessment. JIMD Rep. 15, 13–27 (2015).
Morris, Andrew A.M., U. S. Disorders of Mitochondrial Fatty Acid Oxidation & Ribofavin Metabolism. in Inborn Metabolic Diseases (ed. Saudbray, J. M.) 288–301 (Springer Nature, 2022).
Mosegaard, S. et al. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int. J. Mol. Sci. 21, (2020).
Kara Sürücü, İ. & Eminoğlu, F. T. Riboflavin Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) 28–38 (2023).
O’Callaghan, B., Bosch, A. M. & Houlden, H. An update on the genetics, clinical presentation, and pathomechanisms of human riboflavin transporter deficiency. J. Inherit. Metab. Dis. 42, 598–607 (2019).
Olsen, R. K. J. et al. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. Am. J. Hum. Genet. 98, 1130–1145 (2016).
Hellebrekers, D. M. E. I. et al. Novel SLC25A32 mutation in a patient with a severe neuromuscular phenotype. Eur. J. Hum. Genet. 25, 886–888 (2017).
Schiff, M. et al. SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. N. Engl. J. Med. 374, 795–797 (2016).
Wilson, M. P., Plecko, B., Mills, P. B. & Clayton, P. T. Disorders affecting vitamin B6 metabolism. J. Inherit. Metab. Dis. 42, 629–646 (2019).
Köylü Kıreker, O. & Kasapkara, Ç. S. Pridoksin Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) vol. 1 39–46 (Türkiye Klinikleri, 2023).
Mitsubuchi, H., Nakamura, K., Matsumoto, S. & Endo, F. Biochemical and clinical features of hereditary hyperprolinemia. Pediatr. Int. 56, 492–496 (2014).
Al-Shekaili H, Ciapaite J, van K. C. PLPBP Deficiency. in Gene Reviews (ed. In: Adam MP, Feldman J, Mirzaa GM, et al., E.) (Gene Reviews, 1993).
Johnstone, D. L. et al. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain 142, 542–559 (2019).
Jiao, X. et al. Clinical and genetic features in pyridoxine-dependent epilepsy: a Chinese cohort study. Dev. Med. Child Neurol. 62, 315–321 (2020).
Göksoy, E. Biyotin Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) 47–53 (Türkiye Klinikleri, 2023).
Froese, S. D. & Baumgartner, M. Biotin-responsive Disorders. in Inborn Metabolic Diseases (ed. Saudubrey, J. M.) 502–510 (Springer Nature, 2022).
Tankeu, A. T. et al. Biotinidase deficiency: What have we learned in forty years? Mol. Genet. Metab. 138, (2023).
Bandaralage, S. P. S., Farnaghi, S., Dulhunty, J. M. & Kothari, A. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review. Pediatr. Radiol. 46, 357–364 (2016).
Wolf, B. Biotinidase deficiency: ‘if you have to have an inherited metabolic disease, this is the one to have’. Genet. Med. 14, 565–575 (2012).
Özbey, S. Z. & Gündüz, M. Folat Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) 54–61 (Türkiye Klinikleri, 2023).
Fowler, B., Froese, S. D. & Watkins, D. Disorders of Cobalamin and Folate Transport and Metabolism. in Inborn Metabolic Diseases (ed. Saudubray, J. M.) 512–529 (Springer Nature, 2022).
Zhao, R., Aluri, S. & Goldman, I. D. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption. Mol. Aspects Med. 53, 57–72 (2017).
Steinfeld, R. et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am. J. Hum. Genet. 85, 354–363 (2009).
Pope, S., Artuch, R., Heales, S. & Rahman, S. Cerebral folate deficiency: Analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 42, 655–672 (2019).
Pérez-Dueñas, B. et al. Cerebral folate deficiency syndromes in childhood: clinical, analytical, and etiologic aspects. Arch. Neurol. 68, 615–621 (2011).
Masingue, M. et al. Cerebral folate deficiency in adults: A heterogeneous potentially treatable condition. J. Neurol. Sci. 396, 112–118 (2019).
Selzer, R. R., Rosenblatt, D. S., Laxova, R. & Hogan, K. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N. Engl. J. Med. 349, 45–50 (2003).
Aljassim, N., Alfadhel, M., Nashabat, M. & Eyaid, W. Clinical presentation of seven patients with Methylenetetrahydrofolate reductase deficiency. Mol. Genet. Metab. reports 25, (2020).
Acıpayam, C. et al. Cerebral atrophy in 21 hypotonic infants with severe vitamin B12 deficiency. J. Paediatr. Child Health 56, 751–756 (2020).
Rasmussen, S. A., Fernhoff, P. M. & Scanlon, K. S. Vitamin B12 deficiency in children and adolescents. J. Pediatr. 138, 10–17 (2001).
Tümer, L. & Gökalp, S. Kobalamin Yanıtlı Metabolik Hastalıklar. in Vitamin Yanıtlı Metabolik Hastalıklar (ed. Kasapkara, Ç. S.) 62–68 (Türkiye Klinikleri, 2023).
Yang, L. et al. Brain MRI features of methylmalonic acidemia in children: the relationship between neuropsychological scores and MRI findings. Sci. Rep. 10, (2020).
Coelho, D. et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat. Genet. 44, 1152–1155 (2012).
Froese, D. S., Fowler, B. & Baumgartner, M. R. Vitamin B12 , folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 42, 673–685 (2019).
Fischer, S. et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J. Inherit. Metab. Dis. 37, 831–840 (2014).