Yağ Asidi Oksidasyon ve Karnitin Metabolizma Bozuklukları ve Görüntüleme Bulguları

Yazarlar

Gonca Kılıç Yıldırım
https://orcid.org/0000-0001-6769-667X

Özet

Referanslar

Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol 2002; 64:477-502.

Marsden D, Bedrosian CL, Vockley J. Impact of newborn screening on the reported incidence and clinical outcomes associated with medium and long-chain fatty acid oxidation disorders. Genet Med 2021; 23 (5):816-829.

Coşkun T. Yağ asidi oksidasyonu ve bozuklukları. Katkı Pediatri Dergisi 2008; 30: 5-58.

Baruteau J, Sachs P, Broué P, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2013; 36 (5):795-803.

El-Hattab AW. Systemic primary carnitine deficiency. In: GeneReviews, Pagon RA, Adam MP, Ardinger HH, et al (Eds), University of Washington, Seattle 1993-2017. https://www.ncbi.nlm.nih.gov/books/NBK84551/

Morris AAM, Spiekerkoetter U. Disorders of mitochondrial fatty acid oxidation and related metabolic pathways. In: Saudubray JM, van den Berghe G, Walter JH (eds). Inborn Metabolic Diseases Diagnosis and Treatment (5th ed). New York Springer, 2012

Kilic M, Özgül RK, coşkun T, et al. Idendification of mutations and evaluation of cardiomyopathy in Turkish patients with primary carnitin deficiency. JIMD Rep 2012; 3:17-23

Bonnefont JP, Djouadi F, Prip-Buus C, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004; 25 (5-6):495-520.

Bennett MJ, Santani AB. Carnitine palmitoyltransferase A deficiency. In: GeneReviews, Pagon RA, Adam MP, Ardinger HH, et al (Eds), University of Washington, Seattle 1993-2017.

Innes AM, Seargeant LE, Balachandra K, et al. Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy. Pediatr Res 2000; 47:43-45.

Prasad C, Johnson JP, Bonnefont JP, et al. Hepatic carnitine palmitoyl transferase 1 (CPT1A) deficiency in North American Hutterites (Canadian and American): evidence for a founder effect and results of a pilot study on a DNA-based newborn screening program. Mol Genet Metab 2001; 73:55-63.

Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 2006; 142:77-85.

Wilcken B. Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis 2010; 33:501-506.

Yang BZ, Mallory JM, Roe DS, et al. Carnitine/acylcarnitine translocase deficiency (neonatal phenotype): successful prenatal and postmortem diagnosis associated with a novel mutation in a single family. Mol Genet Metab 2001; 73:64-70.

Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 2010; 33:527-532.

Al-Sannaa NA, Cheriyan GM. Carnitine-acylcarnitine translocase deficiency. Clinical course of three Saudi children with a severe phenotype. Saudi Med J 2010; 31:931-934.

Albers S, Marsden D, Quackenbush E, Stark AR, Lewy HL, Irons M. Detection of neonatal carnitine palmitoyltransferase II deficiency by expanded newborn screening with tandem mass spectrometry. Pediatrics 2001; 107:E103.

Wieser T, Deschauer M, Olek K, Hermann T, Zierz S. Carnitine palmitoyltransferase II deficiency: molecular and biochemical analysis of 32 patients. Neurology 2003; 60:1351-1353.

Bertrand C, Largillière C, Zabot MT, Mathieu M, Vianey-Saban C. Very long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta 1993; 1180:327-329.

Hoffman JD, Steiner RD, Paradise L, et al. Rhabdomyolysis in the military: recognizing late-onset very long-chain acyl Co-A dehydrogenase deficiency. Mil Med 2006; 171:657-658.

Vockley J. Long-chain fatty acid oxidation disorders and current management strategies. Am J Manag Care 2020; 26:147-154.

Derks TG, Reijngoud DJ, Waterham HR, et al. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: clinical presentation and outcome. J Pediatr 2006; 148:665-670.

Arnold GL, Saavedra-Matiz CA, Galvin-Parton PA, et al. Lack of genotype-phenotype correlations and outcome in MCAD deficiency diagnosed by newborn screening in New York State. Mol Genet Metab 2010; 99:263-268.

Wilcken B, Haas M, Joy P, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: a cohort study. Lancet 2007; 369:37-42.

Mayell SJ, Edwards L, Reynolds FE, Chakrapani AB. Late presentation of medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2007; 30:104.

Frazier DM. Medium chain acyl CoA dehydrogenase deficiency. Genetic Metabolic Dietitians International (GMDI). http://gmdi.org/Resources/Nutrition-Guidelines/MCAD (Accessed on December 16, 2019).

Gallant NM, Leydiker K, Tang H, et al. Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol Genet Metab 2012; 106:55-61.

Menon R, Velez DR, Morgan N, Lombardi SJ, Fortunato SJ, Williams SM. Genetic regulation of amniotic fluid TNF-alpha and soluble TNF receptor concentrations affected by race and preterm birth. Hum Genet 2008; 124:243-253.

Wolfe L, Jethva R, Oglesbee D, et al. Short-chain acyl-CoA dehydrogenase deficiency. In: GeneReviews, Pagon RA, Adam MP, Ardinger HH, et al (Eds), University of Washington, Seattle 1993-2017.

Vredendaal PJ, van den Berg IE, Malingré HE, et al. Human short-chain L-3-hydroxyacyl-CoA dehydrogenase: cloning and characterization of the coding sequence. Biochem Biophys Res Commun 1996; 223:718. https://www.ncbi.nlm.nih.gov/books/NBK63582/

Clayton PT, Eaton S, Aynsley-Green A, et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 2001; 108:457-465.

Hussain K, Clayton PT, Krywawych S, et al. Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr 2005; 146:706-708.

Molven A, Matre GE, Duran M, et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004; 53:221-227.

Flanagan SE, Patch AM, Locke JM, et al. Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. J Clin Endocrinol Metab 2011; 96:E498-502.

Martins E, Cardoso ML, Rodrigues E, et al. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: the clinical relevance of an early diagnosis and report of four new cases. J Inherit Metab Dis 2011; 34:835-842.

Spiekerkoetter U, Lindner M, Santer R, et al. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 2009; 32:488-497.

Sperk A, Mueller M, Spiekerkoetter U. Outcome in six patients with mitochondrial trifunctional protein disorders identified by newborn screening. Mol Genet Metab 2010; 101:205-207.

Gillingham MB, Connor WE, Matern D, et al. Optimal dietary therapy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Mol Genet Metab 2003; 79:114-123.

Angle B, Burton BK. Risk of sudden death and acute life-threatening events in patients with glutaric acidemia type II. Mol Genet Metab 2008; 93:36-39.

Singla M, Guzman G, Griffin AJ, Bharati S. Cardiomyopathy in multiple Acyl-CoA dehydrogenase deficiency: a clinico-pathological correlation and review of literature. Pediatr Cardiol 2008; 29:446-451.

Wilson GN, de Chadarévian JP, Kaplan P, Loehr JP, Frerman FE, Goodman SI. Glutaric aciduria type II: review of the phenotype and report of an unusual glomerulopathy. Am J Med Genet 1989; 32:395-401.

Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis 2014; 9:117-125.

Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep 2010; 10:118-126.

Liang WC, Ohkuma A, Hayashi YK, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2009; 19:212-216.

Olsen RK, Olpin SE, Andresen BS, et al. ETFDH mutations as a major cause of riboflavin- responsive multiple acyl-CoA dehydrogenation deficiency. Brain 2007; 130:2045-2054.

Yoon HJ, Kim JH, Jeon TY, Yoo SY, Eo H. Devastating metabolic brain disorders of newborns and young infants. RadioGraphics 2014;34(5):1257-1272.

Patay Z. Metabolic Disorders (2005). In Tortori-Donati, Rossi A. Pediatric Neuroradiology: Brain, Head, Neck and Spine. doi: 10.1007/3-540-26398-5_13. Secaucus, NJ: Springer-Verlag.

Patay Z. MR imaging workup of inborn errors of metabolism of early postnatal onset. Magn Reson Imaging Clin N Am. 2011;19(4):733-759.

Hendriksz CJ. Inborn errors of metabolism for the diagnostic radiologist. Pediatr Radiol. 2009;39(3):211-220.

Biswas A, Malhotra M, Mankad K, et al. Clinico-radiological phenotyping and diagnostic pathways in childhood neurometabolic disorders-a practical introductory guide. Transl Pediatr. 2021;10(4):1201-1230.

Stöckler S, Radner H, Karpf EF, Hauer A, Ebner F. Symmetric hypoplasia of the temporal cerebral lobes in an infant with glutaric aciduria type II (multiple acyl-coenzyme A dehydrogenase deficiency). J Pediatr. 1994;124(4):601-604.

Shelihan I, Rossignol E, Décarie JC. Infantile onset carnitine palmitoyltransferase 2 deficiency: Cortical polymicrogyria, schizencephaly, and gray matter heterotopias in an adolescent with normal development. JIMD Rep. 2021;63(1):3-10.

Boemer F, Deberg M, Schoos R, et al. Diagnostic pitfall in antenatal manifestations of CPT II deficiency. Clin Genet. 2016;89(2):193-197.

Mikati MA, Chaaban HR, Karam PE, Krishnamoorthy KS. Brain malformation and infantile spasms in a SCAD deficiency patient. Pediatr Neurol. 2007 Jan;36(1):48-50.

Chiplunkar S, Bindu PS, Nagappa M. Novel magnetic resonance imaging findings in a patient with short chain acyl CoA dehydrogenase deficiency. Metab Brain Dis. 2017 Aug;32(4):967-970.

Papadopoulou M, Papadopoulou-Legbelou K, Koutsampasopoulou I, Tramma D, Evangeliou A. Broadening the Picture of Short-Chain Acyl-CoA Dehydrogenase Deficiency: A Case Report with Microcephaly, Leukoencephalopathy, and Characteristic Magnetic Resonance Spectroscopic Findings. Journal of Pediatric Neurology. 2018;16(04): 243-244.

Yilmaz TF, Atay M, Toprak H, Guler S, Aralasmak A, Alkan A. MRI findings in encephalopathy with primary carnitine deficiency: a case report. J Neuroimaging. 2015;25(2):325-328.

Firat AK, Karakas HM, Yakinci C. Magnetic resonance spectroscopic characteristics of glutaric aciduria type II. Dev Med Child Neurol. 2006;48(10):847-850.

Gautschi M, Weisstanner C, Slotboom J, Nava E, Zürcher T, Nuoffer JM. Highly efficient ketone body treatment in multiple acyl-CoA dehydrogenase deficiency-related leukodystrophy. Pediatr Res. 2015;77(1):91-98.

Vieira P, Myllynen P, Perhomaa M. Riboflavin-Responsive Multiple Acyl-CoA Dehydrogenase Deficiency Associated with Hepatoencephalomyopathy and White Matter Signal Abnormalities on Brain MRI. Neuropediatrics. 2017;48(3):194-198.

Talamanca LF, Pasquini L, Napolitano A, Longo D. MRI in medium-chain acyl-coenzyme A dehydrogenase deficiency: neuroimaging during the first month. J Pediatr Endocrinol Metab. 2017;30(8):905-908.

Das S, Joardar S, Chatterjee R, Guha G, Hashmi MA. Rare magnetic resonance imaging findings in medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatr Neurol. 2011;45(3):203-205.

Gonçalves FC, Alves CAPE, Heuer B, et al. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics. 2020; 40(7):2042-2067.

Thompson JE, Smith M, Castillo M, Barrow M, Mukherji SK. MR in children with L-carnitine deficiency. AJNR Am J Neuroradiol. 1996;17(8):1585-1588.

Wong DST, Poskitt KJ, Chau V, et al. Brain Injury Patterns in Hypoglycemia in Neonatal Encephalopathy. AJNR Am J Neuroradiol. 2013;34(7):1456-1461.

Yang XF, Liu GS, Yi B. Primary carnitine deficiency in two sisters with intractable epilepsy and reversible metabolic cardiomyopathy: Two case reports. Exp Ther Med. 2020;20(5):118.

Takanashi J, Fujii K, Sugita K, Kohno Y. Neuroradiologic findings in glutaric aciduria type II. Pediatr Neurol. 1999;20(2):142-145.

Shevell MI, Didomenicantonio G, Sylvain M, Arnold DL, O'Gorman AM, Scriver CR. Glutaric acidemia type II: neuroimaging and spectroscopy evidence for developmental encephalomyopathy. Pediatr Neurol. 1995;12(4):350-353.

Gordon N. Glutaric aciduria types I and II. Brain Dev. 2006 Apr;28(3):136-140.

Guevara-Campos J, González-Guevara L, Guevara-González J, Cauli O. First Case Report of Primary Carnitine Deficiency Manifested as Intellectual Disability and Autism Spectrum Disorder. Brain Sci. 2019;19(6):137.

Sigauke E, Rakheja D, Kitson K, Bennett MJ. Carnitine palmitoyltransferase II deficiency: a clinical, biochemical, and molecular review. Lab Invest. 2003;83(11):1543-1554.

Reddy N, Calloni SF, Vernon HJ, Boltshauser E, Huisman T, Soares BP. Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics. 2018;38(3):912-931.

Merritt JW II, Chang IJ. Medium-chain acyl-coenzyme A dehydrogenase deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al, GeneReviews [Internet], University of Washington, Seattle, 2000 (updated 2019).

Linder M, Hoffmann GF, Matern D. Newborn screening for disorders of fatty-acid oxidation: Experience and recommendations from an expert meeting. J Inherit Metab Dis 2010; 33(5):521-526.

Spiekerkoetter U, Lindner M, Santer R, et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis. 2009;32(4):498-505.

Gillingham MB, Connor WE, Matern D, et al. Optimal dietary therapy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Mol Genet Metab 2003; 79(2):114-123.

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213687s000lbl.pdf.

Deng S, Zhang GF, Kasumov T, et al. Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver. J Biol Chem 2009; 284(41):27799-27807.

Roe CR, Sweetman L, Roe DS, et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 2002; 110(2):259-269.

Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: therapeuticpotential. J Inherit Metab Dis 2006; 29(2-3):332-340.

Barone AR, DeWard SJ, Payne N, et al. Triheptanoin therapy for inherited disorders of fatty acid oxidation. Program for Society for Inherited Medical Disorders Annual Meeting. Abstracts. Mol Genet Metab 2012; 105:304.

Martin JM, Gillingham MB, Harding CO. Use of propofol for short duration procedures in children with long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiencies. Mol Genet Metab 2014; 112(2):139-142.

Bonnefont JP, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med 2009; 360(8):838-840.

Ørngreen MC, Madsen KL, Preisler N, et al. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology 2014; 82(7):607-613.

Vatanavicharn N, Yamada K, Aoyama Y, et al. Carnitine-acylcarnitine translocase deficiency: Two neonatal cases with common splicing mutation and in vitro bezafibrate response. Brain Dev 2015; 37(7):698-703.

Yamaguchi S, Li H, Purevsuren J, et al. Bezafibrate can be a new treatment option for mitochondrial fatty acid oxidation disorders: evaluation by in vitro probe acylcarnitine assay. Mol Genet Metab 2012; 107(1-2):87-91.

Kormanik K, Kang H, Cuebas D, et al. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate. Mol Genet Metab 2012;107(4):684-689.

Amat di San Filippo C, Pasquali M, Longo N. Pharmacological rescue of carnitinetransport in primary carnitine deficiency. Hum Mutat 2006; 27(6):513-523.

Schowalter DB, Matern D, Vockley J. In vitro correction of medium chain acyl CoA dehydrogenase deficiency with a recombinant adenoviral vector. Mol Genet Metab 2005; 85(2):88-95.

Conlon TJ, Walter G, Owen R, et al. Systemic correction of a fatty acid oxidation defect by intramuscular injection of a recombinant adeno-associated virus vector. Hum Gene Ther 2006; 17(1):71-80.

Beattie SG, Goetzman E, Conlon T, et al. Biochemical correction of short-chain acyl- coenzyme A dehydrogenase deficiency after portal vein injection of rAAV8-SCAD. Hum Gene Ther 2008; 19(6):579-588.

Merritt JL, Nguyen T, Daniels J, et al. Biochemical correction of very long-chain acyl-CoA dehydrogenase deficiency following adeno-associated virus gene therapy. Mol Ther 2009; 17(3):425-429.

Wang Y, Palmfeldt J, Gregersen N, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 2019; 294(33):12380-12391.

Seminotti B, Leipnitz G, Karunanidhi A, et al. Mitochondrial energetics is impaired in very long-chain acyl-CoA dehydrogenase deficiency and can be rescued by treatment with mitochondria-targeted electron scavengers. Hum Mol Genet 2019; 28(6):928-941.

Gelecek

29 Nisan 2025

Lisans

Lisans