Domates Yetiştiriciliği

Yazarlar

Yelderem Akhoundnejad
Pakize Gök Güler

Özet

Domates, dünyada en yaygın yetiştirilen ve tüketilen sebzelerden biri olup hem sofralık hem de sanayi tipi üretimiyle stratejik öneme sahiptir. Anavatanı Güney Amerika olan domates, 16. yüzyılda Avrupa’ya, 19. yüzyılda ise Türkiye’ye girmiştir. Günümüzde Çin, Hindistan ve Türkiye dünya üretiminde ilk sıralarda yer almakta, Türkiye yüksek verimliliğiyle öne çıkmaktadır. Domates meyveleri düşük enerji değerine rağmen C, A, E ve K vitaminleri ile potasyum ve kalsiyum açısından zengindir. Özellikle kırmızı rengini veren likopen, güçlü antioksidan etkisi sayesinde sağlık üzerinde koruyucu bir rol oynamaktadır. Bu bölümde domatesin botanik özellikleri (kök, gövde, yaprak, çiçek ve meyve yapısı) ayrıntılı biçimde ele alınmış, ekolojik istekleri (sıcaklık, ışık, nem, toprak özellikleri) ve çeşit tipleri değerlendirilmiştir. Ayrıca yetiştirme teknikleri; toprak hazırlığı, fide üretimi, dikim sistemleri, topraksız tarım, gübreleme, sulama, budama ve hasat işlemleriyle açıklanmıştır. Üretimde verim ve kaliteyi sınırlayan başlıca zararlı ve hastalıklar da tartışılmıştır. Zararlılar arasında Tuta absoluta, beyaz sinek, yaprak bitleri ve trips öne çıkarken; hastalıklar arasında bakteriyel kanser, solgunluk, virüsler ve viroidler önemli kayıplara yol açmaktadır. Bu etmenlere karşı entegrede mücadele yöntemleri ve dayanıklı çeşit kullanımı önceliklidir. Sonuç olarak, domates üretiminde uygun ekolojik koşullar ve modern yetiştiricilik uygulamaları sayesinde yüksek verim, kalite ve sürdürülebilirlik sağlanabilmektedir. Domates, hem taze tüketim hem de salça, sos, ketçap gibi işlenmiş ürünler için vazgeçilmez bir tarımsal üründür.

Referanslar

Peralta, I. E., & Spooner, D. M. (2007). History, origin and early cultivation of tomato (Solanaceae). In Genetic improvement of solanaceous crops (Vol. 2, pp. 1–27).

Razifard, H., Ramos, A., Della Valle, A. L., Bodary, C., Goetz, E., Manser, E. J., Li, X., Zhang, L., Visa, S., Tieman, D., et al. (2020). Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Molecular Biology and Evolution, 37(4), 1118–1132. https://doi.org/10.1093/molbev/msz306

Gould, W. A. (2013). Tomato production, processing and technology. Elsevier.

Zeide, A. (2014). In cans we trust: Food, consumers, and scientific expertise in twentieth-century America (Doctoral dissertation). University of Wisconsin-Madison.

Al-Remi, F., et al. (2018). Domates bitkisi ve in vitro mikro çoğaltımı (Tomato plant and its in vitro micropropagation). Journal of Engineering Technology and Applied Sciences, 3(1), 55–73.

Knapp, S., & Peralta, I. E. (2016). The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. In The potato genome (pp. 7–21). Springer.

Barboza, G. E., Hunziker, A. T., Bernardello, G., Cocucci, A. A., Moscone, A. E., Carrizo García, C., Fuentes, V., Dillon, M. O., Bittrich, V., Cosa, M. T., & Subils, R. (2016). Solanaceae. In Flowering plants, eudicots (pp. 295–357). Springer, Cham.

Moyetta, N. R., Stiefkens, L. B., & Bernardello, G. (2013). Karyotypes of South American species of the Morelloid and Dulcamaroid clades (Solanum, Solanaceae). Caryologia, 66(4), 333–345.

Food and Agriculture Organization. (n.d.). Tomato. FAO. Retrieved from https://www.fao.org/faostat/en/#data/QCL

Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., ... & Gan, S. H. (2020). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 45.

Wang, C., Li, M., Duan, X., Abu-Izneid, T., Rauf, A., Khan, Z., ... & Suleria, H. A. (2023). Phytochemical and nutritional profiling of tomatoes; impact of processing on bioavailability—a comprehensive review. Food Reviews International, 39(8), 5986–6010.

Amr, A., & Raie, W. (2022). Tomato components and quality parameters: A review. Jordan Journal of Agricultural Sciences, 18(3), 199–220.

Food and Agriculture Organization. (2004). Food energy – methods of analysis and conversion factors (FAO Food and Nutrition Paper 77). FAO. https://www.fao.org/4/x9892e/X9892e05.htm

Palozza, P., Parrone, N., Simone, R., & Catalano, A. (2012). Lycopene in atherosclerosis prevention: An integrated scheme of the potential mechanisms of action from cell culture studies. Archives of Biochemistry and Biophysics, 525(2), 134–138. https://doi.org/10.1016/j.abb.2012.02.017

Rowles, J. L., Ranard, K. M., Applegate, C. C., Jeon, S., An, R., & Erdman, J. W. (2017). Processed and raw tomato consumption and risk of prostate cancer: A systematic review and dose–response meta-analysis. Prostate Cancer and Prostatic Diseases, 21(3), 319–336. https://doi.org/10.1038/s41391-017-0005-x

Zamani, M., Behmanesh Nia, F., Ghaedi, K., Mohammadpour, S., Amirani, N., Goudarzi, K., ... & Ashtary-Larky, D. (2023). The effects of lycopene and tomato consumption on cardiovascular risk factors in adults: A grade assessment systematic review and meta-analysis. Current Pharmaceutical Design, 29(21), 1671–1700.

Górecka, D., Wawrzyniak, A., Jędrusek-Golińska, A., Dziedzic, K., Hamułka, J., Kowalczewski, P. Ł., & Walkowiak, J. (2020). Lycopene in tomatoes and tomato products. Open Chemistry, 18, 752–756.

Knapp, S., & Peralta, I. E. (2016). The tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. In The tomato genome (pp. 7–21). Springer.

Peralta, I. E., & Spooner, D. M. (2005). Classification of wild tomatoes: A review. Kurtural Research Unit, University of Wisconsin. https://vcru.wisc.edu/spoonerlab/pdf/Classification%20of%20wild%20tomatoes%20a%20review.pdf?utm_source=chatgpt.com

Bayındır, S., & Kandemir, D. (2023). Root system architecture of interspecific rootstocks and its relationship with yield components in grafted tomato. Gesunde Pflanzen, 75, 329–341. https://doi.org/10.1007/s10343-022-00704-4

Cauich, O., Quezada-Euán, J. J. C., Macias-Macias, J. O., Reyes-Orecel, V., Medina-Peralta, S., & Parra-Tabla, V. (2004). Behaviour and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in subtropical Mexico. Journal of Economic Entomology, 97, 475–481. https://doi.org/10.1603/0022-0493-97.2.475

Qin, Y., Gong, A., Liu, X., Li, N., Ji, T., Li, J., & Yang, F. (2024). Testing a simulation model for the response of tomato fruit quality formation to temperature and light in solar greenhouses. Plants, 13, 1662. https://doi.org/10.3390/plants13101662

Costantini, E. A. C., Branquinho, C., Nunes, A., Schwilch, G., Stavi, I., Valdecantos, A., & Zucca, C. (2015). Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth, 7, 397–414. https://doi.org/10.5194/se-7-397-2015

Daşgan, H. Y., Aksu, K. S., Zikaria, K., & Gruda, N. S. (2024). Biostimulants enhance the nutritional quality of soilless greenhouse tomatoes. Plants, 13(18), 2587. https://doi.org/10.3390/plants13182587

Pokhrel, B. (2021). Review on post-harvest handling to reduce loss of fruits and vegetables. International Journal of Horticulture and Food Science, 2(2), 48–52.

Karssen, G., & Moens, M. (2006). Root-knot nematodes. In Plant nematology (pp. 59–90). CABI Publishing.

Bozbuga, R., Erol, Ü. H., Arpacı, B. B., Güler, P. G., Kara, P. A., Yıldız, H. N., & Kahya, D. (2024). Symbiotic interactions among plant pests and pathogens: Nematodes, bacteria, viroids, viruses, insects, and other organisms. In Symbiotic interactions—From mutualistic alliances to parasitic exploits. IntechOpen.

Bozbuga, R., Uluisik, S., Kara, P. A., Yuceer, S., Gunacti, H., Guler, P. G., ... & Tetik, O. (2022). Pests, diseases, nematodes, and weeds management on strawberries. In Recent studies on strawberries. IntechOpen.

Bozbuga, R., Uluisik, S., Aridici Kara, P., Yuceer, S., Gunacti, H., Gok Guler, P., … Tetik, O. (2023). Pests, diseases, nematodes, and weeds management on strawberries. IntechOpen. https://doi.org/10.5772/intechopen.103925

Bozbuga, R., Kara, P. A., Yıldız, H. N., Güler, P. G., Erol, Ü. H., Özgören, B., Kahya, D., & Arpacı, B. B. (2025). Plant breeding for tolerance to biotic stressors including nematodes, diseases, and insect pests. In Symbiotic interactions. IntechOpen. https://doi.org/10.5772/intechopen.1011650

Eisenback, J. D., & Triantaphyllou, H. H. (1991). Root-knot nematodes: Meloidogyne species and races. In Manual of agricultural nematology (Vol. 1, pp. 191–274).

Jaffee, B. A. (2004). Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? Journal of Nematology, 36(3), 267–275.

Anonymous. (2022). Available from: https://www.turktob.org.tr/dergi/makaleler/dergi17/TTOB_Dergi17_WEB60_65.pdf (Accessed May 26, 2022).

Anonymous. (2017). Örtüaltı Entegre Mücadele Teknik Talimatı (in Turkish). Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Gıda ve Kontrol Genel Müdürlüğü, Ankara, Turkey, pp. 1–137.

Ulusoy, S., Kahya, D., Gökhan, M., & Özgür, O. (2023). Insecticide resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) in cotton fields in Çukurova Region (Türkiye). Turkish Journal of Entomology, 47(4), 387–399.

Hazir, A., Yayla, M., Kahya, D., & Atakan, E. (2022). Effectiveness of various insecticides and predatory bug, Orius laevigatus (Fieber, 1860) (Hemiptera: Anthocoridae) releases on Thrips hawaiiensis (Morgan, 1913) (Thysanoptera: Thripidae) in lemon (Citrus limon L.) orchards in Mersin (Türkiye). Turkish Journal of Entomology, 46(4), 373–383.

Kahya, D., Görür, S. E., Doğru, A., & Karut, Ş. T. (2024). The oviposition preference of predatory insect, Orius laevigatus (Fieber, 1860) (Hemiptera: Anthocoridae), on different succulent plants. International Journal of Tropical Insect Science, 44(3), 1375–1381.

Bozbuga, R., Ates, S. Y., Guler, P. G., Yildiz, H. N., Kara, P. A., Arpaci, B. B., & Imren, M. (2022a). Host–pathogen and pest interactions: Virus, nematode, viroid, bacteria, and pests in tomato cultivation. In Tomato—From cultivation to processing technology. IntechOpen.

Alfaro-Fernández, A., Del Carmen Córdoba-Sellés, M., Herrera-Vásquez, J., Cebrián, M., & Jordá, C. (2010). Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. Journal of Phytopathology, 158, 217–226. https://doi.org/10.1111/j.1439-0434.2009.01605.x

Deja-Sikora, E., Mercy, L., Baum, C., & Hrynkiewicz, K. (2019). The contribution of endomycorrhiza to the performance of Potato virus Y-infected solanaceous plants: Disease alleviation or exacerbation? Frontiers in Microbiology, 10, 516. https://doi.org/10.3389/fmicb.2019.00516

EPPO. (2020). Datasheets on pests recommended for regulations: Tomato brown rugose fruit virus. EPPO Bulletin, 50(3), 529–534. https://doi.org/10.1111/epp.12711

Anonymous. (2019). Tomato brown rugose fruit tobamovirus (ToBRFV). Retrieved from http://www.tarimorman.gov.tr

Zhang, S., & Groth-Helms, D. (2024). Viral diseases of field and horticultural crops; Viroid diseases of tomato. In Viral diseases of field and horticultural crops (Chapter 45, pp. 379–385). https://doi.org/10.1016/B978-0-323-90899-3.00024-0

Di Serio, F., et al. (2020). ICTV virus taxonomy profile: Pospiviroidae. Journal of General Virology. https://doi.org/10.1099/jgv.0.001356

Singh, R. P., Singh, M., Boucher, A., & Owens, R. A. (1993). A mild strain of potato spindle tuber viroid from China is similar to North American isolates. Canadian Journal of Plant Pathology, 15, 134–138.

OEPP/EPPO. (2021). PM 7/138 (1) Pospiviroids (genus Pospiviroid). EPPO Bulletin, 51(1), 144–177.

Ling, K. S. (2017). Decontamination measures to prevent mechanical transmission of viroids. In A. Hadidi, R. Flores, P. Palukaitis, & J. Randles (Eds.), Viroids and satellites (Chapter 41, pp. 437–445). Elsevier. https://doi.org/10.1016/B978-0-12-801498-1.00041-3

Vargas, G. S., Meriles, J. M., Haro, R., Casini, C., & March, G. J. (2008). Crop rotation and tillage systems as a proactive strategy in the control of peanut fungal soilborne diseases. Biocontrol, 53, 685–698.

Ma, M., Taylor, P. W. J., Chen, D., Vaghefi, N., & He, J. Z. (2023). Major soilborne pathogens of field processing tomatoes and management strategies. Microorganisms, 11(2), 263. https://doi.org/10.3390/microorganisms11020263

Anonymous. (2022). Domates hastalık ve zararlıları ile mücadele. Retrieved from http://www.tarimorman.gov.tr

Salem, N. M., Abumuslem, M., Turina, M., Samarah, N., Sulaiman, A., Abu-Irmaileh, B., & Ata, Y. (2022). New weed hosts for tomato brown rugose fruit virus in wild Mediterranean vegetation. Plants, 11, 2287. https://doi.org/10.3390/plants11172287

Anonymous. (2022). Yabancı ot zirai mücadele teknik talimatları. Retrieved from http://www.tarimorman.gov.tr

Kahya, D. (2023). A comparative study of two-sex life table parameters of Orius laevigatus Fieber (Hemiptera: Anthocoridae) on two mealybug species, Planococcus citri Risso and P. solenopsis Tinsley (Hemiptera: Pseudococcidae). Egyptian Journal of Biological Pest Control, 33(1), 92.

Ravichandra, N. G. (2010). Methods and techniques in plant nematology (p. 197). PHI Learning Private Limited.

Manzari, S., & Fathipour, Y. (2021). Whiteflies. In O. Omkar (Ed.), Polyphagous pests of crops (pp. 183–230). Springer. https://doi.org/10.1007/978-981-15-8075-8_4

Kumar, B., & Omkar. (2021). Thrips. In O. Omkar (Ed.), Polyphagous pests of crops (Chapter 9). Springer. https://doi.org/10.1007/978-981-15-8075-8_9

Wu, S., Su, H., Gao, F., et al. (2023). An insight into the prevention and control methods for bacterial wilt disease in tomato plants. Agronomy, 13, 3025. https://doi.org/10.3390/agronomy13123025

Wang, Y. M., Ostendorf, B., Gautam, D., Habili, N., & Pagay, V. (2022). Plant viral disease detection: From molecular diagnosis to optical sensing technology—A multidisciplinary review. Remote Sensing, 14, 1542. https://doi.org/10.3390/rs14171542

Yayınlanan

3 Ekim 2025

Lisans

Lisans