Karpuz Yetiştiriciliği

Yazarlar

Nebahat Sarı
İlknur Solmaz
Veysel Aras

Özet

Karpuzun anavatanı Afrika’dır. Çin, en büyük karpuz üretici ülkedir, bu ülkeyi ikinci sırada Türkiye takip etmektedir. Türkiye’de domatesten sonra en fazla üretilen sebze karpuzdur. Türkiye’de en fazla karpuz üreten iller Adana ve Antalya’dır. Örtüaltı karpuz yetiştiriciliğinin çok büyük bir kısmı alçak tünellerde ve Çukurova’da gerçekleştirilmektedir. Karpuz, likopen içeriği en fazla olan sebzelerdendir. Tek yıllıktır ve yerde sürünerek gelişir. Çiçek yapısı monoik ve andromonoiktir, bu nedenle mutlaka tozlayıcıya ihtiyaç duyar. Meyveler genellikle 3.5-15 kg ağırlığında olup, 120 kg kadar büyük ve 1.0-3.5 kg aralığından daha küçük istisnalar da vardır. Ağır toprak koşullarından hoşlanmaz, kumlu-tınlı topraklardan hoşlanır. Toprak profilinin 1 m’den daha derin olması ve taban suyunun da 1 m’den daha aşağıda olması gereklidir. Optimum sıcaklık isteği 27-30 o C’dir, fakat 35-45 o C’de zararlanmadan yetiştirilebilir. Nem bakımından pek seçici değildir, yüksek veya düşük nemde zararlanmadan yetiştirilebilir. Işığa bağımlı bir tür değildir, nötr gün bitkisidir, ancak ışıktan hoşlanır. Karpuzda aralık ve mesafeler, yetiştiriciliğin sulu olup olmamasına göre değişim gösterir. Sıra arası 1,5- 3,5 m, sıra üzeri 0,5-1 m şeklinde ekim-dikim yapılabilir. Fusarium hastalığından dolayı, yetiştiriciliğin çok büyük bir kısmı aşılı fide ile yapılmaktadır.

Referanslar

Teppner H. Notes on Lagenaria and Cucurbita (Cucurbitaceae) - Review and new contributions Phyton; Annales Rei Botanicae. 2004; 44(2):245-308.

Welbaum GE. Chapter-10 Family of Cucurbitaceae. Vegetable production and practices (Edt. G.E. Welbaum) CABI, Boston, Wallingford, UK. 2015; 10-49. ISBN 978-1-84593-802-4

Lee S, Lee W, Ali A, et al. Genome-wide ıdentification and classification of the AP2/EREBP gene family in the cucurbitaceae species. Plant Breeding and Biotechnology (June). 2017; 5(2):123-133. doi.10.9787/PBB.2017.5.2.123

Paris HS, Tadmor Y, Schaffer, AA. Cucurbitaceae melons, squash, cucumber. Encyclopedia of Applied Plant Sciences. 2017; 209-217. doi:10.1016/b978-0-12-394807-6.00063-0

Paris HS. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Annals of Botany. 2015; 116(2):133–148. doi:10.1093/aob/mcv077

Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis of archaeological specimens. Vegetation History and Archaeobotany. 2016; 25(4):405-414. doi:10.1007/s00334-016-0555-1

Chomicki G, Renner SS. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytologist. 2015; 205(2):526-532. doi:10.1111/nph.13163

Achigan-Dako EG, Avohou ES, Linsoussi C, et al. Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus). Genetic Resources and Crop Evolution; 2015; 62(8): 1159–1179. doi:10.1007/s10722-015-0220-z

Levi A, Thomas CE, Keinath AP, Wehner TC. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution. 2001; 48(6): 559-566. doi:10.1023/a:1013888418442

Nimmakayala P, Levi A, Abburi L, et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics. 2014; 15(1):767. doi:10.1186/1471-2164-15-767

Gkanogiannis A, Rahman H, Singh RK et al. Chromosome-level genome assembly and functional annotation of Citrullus colocynthis: unlocking genetic resources for drought-resilient crop development. Planta. 2024; 260:124. doi:10.1007/s00425-024-04551-7

Wehner TC. Watermelon. In: J. Prohens and F. Nuez (eds.). Handbook of plant breeding; Vegetables I. 2008; 381-418.

Renner SS, Wu S, Perez-Escobar OA et al. A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proc Natl Acad Sci USA. Biological Sciences. 2021; 118:e2101486118. doi:10.1073/pnas.2101486118

Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics. 2012; 45(1): 51-58. doi:10.1038/ng.2470

Renner SS. How Russian breeders discovered Citrullus mucosospermus and Citrullus lanatus var. cordophanus, the likely closest relatives of domesticated watermelon. Cucurbit Genetic Coop. Report. 2019; 42:10-12.

Renner SS, Sousa A, Chomicki G. Chromosome numbers, Sudanese wild forms, and classification of the watermelon genus Citrullus, with 50 names allocated to seven biological species. Taxon. 2017;66(6):1393-1405. doi:10.12705/666.7

Wehner TC. Maynard DN. Cucumbers, melons, and other cucurbits. Encyclopedia of Food and Culture. Edt. S.H. Katz. Scribner & Sons, New York, 2003; 2014 p.

FAO, 2023. The Food and Agriculture Organization, FAOSTAT web sayfası. (21/03/2025 tarihinde https://www.fao.org/faostat/en/#data/QCL adresinden ulaşılmıştır).

TÜİK, 2023. Türkiye İstatistik Kurumu web sayfası. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. Erişim Tarihi 11.11.2024

Narina SSS. Section X Chapter 25 Growth responses of watermelon to biotic and abiotic stresses. Chapter 23 Soil Salinity: causes, effects, and management in cucurbits. Handbook of cucurbits (Growth, cultural practices, and physiology) Edt. Mohammad Pessarakli. Taylor & Francis Group, LLC. 2016; 453-478. ISBN:13: 978-1-4822-3459-6

Yamaguchi M. Chapter 23, Cucurbits. World vegetables: Principles, production and nutritive values. AVİ Publishing Company, Inc. 1983. doi.10.1007/978-94-011-7907-2

Singh KP, Singh B, Chand P, et al. Section IX Therapeutic and medicinal values of cucurbits. Chapter 22, Cucurbits: Assortment and Therapeutic Values. Handbook of cucurbits (Growth, cultural practices, and physiology) Edt. Mohammad Pessarakli. Taylor & Francis Group, LLC. 2016; 405-418. ISBN:13: 978-1-4822-3459-6

Naz A, Butt MS, Sultan MT et al. Watermelon lycopene and allied health claims. EXCLI Journal. 2014 Jun 3; 13:650-60. PMID: 26417290; PMCID: PMC4464475.

Rubatzky VE, Yamaguchi M. Chapter 24, Cucumber, melons, watermelons, squashes and other cucurbits. World Vegetables: principles, production, and nutritive values. Chapman & Hall, New York. 1997; 602-608. doi: 10.1007/978-1-4615-6015-9

Kano Y. Changes of sugar kind and ıts content in the fruit of watermelon during ıts development and after harvest. Environment Control in Biology. 1991; 29(4):159-166. doi:10.2525/ecb1963.29.159

Yativ M, Harary I, Wolf S. Sucrose accumulation in watermelon fruits: Genetic variation and biochemical analysis. Journal of Plant Physiology. 2010; 167(8):589-596. doi:10.1016/j.jplph.2009.11.009

Zhang B, Tolstikov V, Turnbull C, et al. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proceedings of the National Academy of Sciences. 2010; 107(30):13532–13537. doi:10.1073/pnas.0910558107

Liu J, Guo S, He H. et al. Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum. 2013; 35(11):3213-3222. doi:10.1007/s11738-013-1356-0

Elmstrom GW, Davis PL. Sugars in developing and mature fruits of several watermelon cultivars. Journal of the American Society for Horticultural Science. 1981; 106:330-333. doi:10.21273/JASHS.106.3.330

Brown AL, Summers WL. Carbohydrate accumulation and color development in watermelon. Journal of the American Society for Horticultural Science. 1985; 110(5):683-687. doi:10.21273/JASHS.110.5.683

Kumar SR. Section I Introductory Chapters, Chapter 1 Cucurbits: History, nomenclature, taxonomy, and reproductive growth. Handbook of Cucurbits (Growth, Cultural Practices, and Physiology) Edt. Mohammad Pessarakli. Taylor & Francis Group, LLC. 2016; p. 3-23. ISBN:13: 978-1-4822-3459-6.

TÜRKOMP, Tarım ve Orman Bakanlığı, Ulusal Gıda Kompozisyon Veri Tabanı. https://turkomp.tarimorman.gov.tr. Erişim Tarihi 11.11.2024.

Aras V. Citrulline content of fruit flesh and rind parts in different watermelon lines. Journal of Agricultural Science and Technology. 2025; 26 (7): 145-156. doi. 10.22034/JAST.27.1.145

Elmstrom GW. Watermelon root development affected by direct seeding and transplanting. HortScience. 1973; 8:134-136. doi: 10.21273/HORTSCI.8.2.134b

Mohr HC. Watermelon breeding. In: Bassett, M (edt.) Breeding vegetable crops. AVI publ. Co. Westport, CT. 1986; 37-66.

Galluzzi G, Seyoum A, Halewood M et al. The role of genetic resources in breeding for climate change: The case of public breeding programmes in eighteen developing countries. Plants. 2020; 9(9): 1129.

Kumari M, Singh HS, Behera TK. Section IV, Cucurbits physiological stages of growth and development II, Chapter 10 Flowering and Its modification in cucurbits. Handbook of Cucurbits (Growth, Cultural Practices, and Physiology) Edt. Mohammad Pessarakli. Taylor & Francis Group, LLC. 2016; p. 171-180. ISBN:13: 978-1-4822-3459-6

Abbey L. Section IV, Cucurbits physiological stages of growth and development II, Chapter 9 Cucurbits physiological stages of growth. Handbook of cucurbits (Growth, cultural practices, and physiology) (Edt. Mohammad Pessarakli). Taylor & Francis Group, LLC, ISBN:13: 978-1-4822-3459-6; 2016: 151-170.

Bomfim IGA, Freitas BM, Souza de Aragão FA et al. Section IV Cucurbits physiological stages of growth and development II, Chapter 11 Pollination in cucurbit crops. Handbook of cucurbits (Growth, cultural practices, and physiology) Edt. Mohammad Pessarakli. Taylor & Francis Group, LLC. ISBN:13: 978-1-4822-3459-6. 2016; 181-200.

Loy JB. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Critical Reviews in Plant Sciences. 2004: 23(4), 337–363. doi:10.1080/07352680490490733

Wien HC. The Cucurbits: Cucumber, melon, squash and pumpkin. The physiology of vegetable crops (ed. Wien, H.C.), CAB International, New York, 1997; 345–386

Bhalla PR. Gibberellin-like substances in developing watermelon seeds. Physiologia Plantarum. 1971; 24(1):106–111. doi:10.1111/j.1399-3054.1971.tb06726.x

Adıgüzel P. Solmaz İ. Türkiye’de bitki genetik kaynaklarının mevcut durumu ve korunması. Türkiye Tarımsal Araştırmalar Dergisi; 2023; 10(3): 352-360.

Salgotra RK, Chauhan BS. Genetic diversity, conservation, and utilization of plant genetic resources. Genes. 2023; 14(1): 174.

Sari N, Solmaz İ. Watermelon genetic resources and diversity. In: The watermelon genome. Cham: Springer International Publishing. 2023; 23-36

Bunjkar A, Walia P, Sandal SS. Unlocking genetic diversity and germplasm characterization with molecular markers: strategies for crop improvement. Journal of Advances in Biology & Biotechnology. 2024; 27(6): 160-173.

Coskun OF, Gulsen O. Molecular, morphological and phytochemical characterization of some watermelon (Citrullus lanatus L.) genotypes. Horticultural Science. 2024; 51(3).

Solmaz I, Aka Kacar Y, Sari N, et al. Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turkish Journal of Agriculture and Forestry. 2016; 40: 407-419

Levi A, Jarret R, Kousik S, et al. Genetic resources of watermelon. R. Grumet et al. (eds.), Genetics and genomics of cucurbitaceae, plant genetics and genomics: crops and models. Springer International Publishing AG 2017; 87, Published Online: 23 Mar 2017. doi:10.1007/7397_2016_34

Sari N, Solmaz I, Yetisir H, et al. Watermelon genetic resources in Turkey and their characteristics. Acta Horticulture. 2006; 731:433-438.

Solmaz I, Sari N. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genetic Resources and Crop Evolution. 2009; 56: 173-188.

Sari N, Solmaz I. Turkey watermelon and melon genetic resources. 72 Tasarim Ltd. Şti. press, ISBN: 978-605-2353-62-2, Ankara, 2018; 280.

Grieve CM, Grattan SR, Maas EV. Agricultural salinity assessment and management. Edition: second. Chapter: Plant salt tolerance. Publisher: ASCE. Editors: WW Wallendar and KK Tanji. 2011; 405-459. doi:10.1061/9780784411698.ch13

Kotuby-Amacher J, Koing R, Kitchen B. Salinity and plant tolerance. Utah State University Extension Publication. AG-SO-03. Logan, UT: Utah State University. 2000;1:8.

Aras V. Effects of Grafting Some Watermelon Lines on Different Rootstocks on Leaf Nutrient Contents under Greenhouse Conditions. Türk Tarım ve Doğa Bilimleri Dergisi. 2023; 10(3):726–738.

TTSM. Standart tohumluk kayıt listesi, Tohumluk Tescil ve Sertifikasyon Merkez Müdürlüğü, 2024.

Yetisir H, Sari N. Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture. 2003;43(10), 1269-1274.

Yetişir H, Sari N, Yücel S. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica. 2003; 31, 163-169.

Davis AR, Perkins-Veazie P. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genetics Cooperative Report, 2005; 28: 39.

Alan Ö, Özdemir N, Günen Y. Effect of grafting on watermelon plant growth, yield and quality. Journal Agronomy: 2007: 6: 362-365.

Zaaroor-Presman M, Alkalai-Tuvia S, Chalupowicz D, et al. Watermelon rootstock/scion relationships and the effects of fruit-thinning and stem-pruning on yield and postharvest fruit quality. Agriculture. 2020; 10(9):366.

Aras V, Sarı N, Solmaz İ. Effects of Cucurbita, Lagenaria and Citrullus rootstocks on pollen and fruit characters, seed yield and quality of F1 hybrid watermelon. International Journal of Agriculture Environment and Food Sciences. 2022: 6(4): 683-693.

Adıgüzel P. Farklı anaçlar üzerine aşılamanın Kırkağaç kavunlarında (Cucumis melo var. inodorus) bitki gelişimi, meyve ve tohum özelliklerine etkisi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. 2023, 122s.

FİDEBİRLİK. Fide Üreticileri Alt Birliği, 2017.

Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science. 2014; 5: 727.

Salam MA, Masum ASMH, Chowdhury SS, et al. Growth and yield of watermelon as influenced by grafting. Journal of Biological Sciences. 2002; 2(5): 298-299.

Romero L, Belakbir A, Ragala L et al. Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Science and Plant Nutrition. 1997; 43: 855-862. doi:10.1080/00380768.1997.10414652

Yetisir H, Uygur V. Responses of grafted watermelon onto different gourd species to salinity stress. Journal of Plant Nutrition. 2010; 33(3):315-327.

Bulder HAM, Den Nijs APM, Speek EJ et al. The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. Journal of Plant Physiology. 1991; 138(6): 661-666.

Rivero RM, Ruiz JM, Sánchez E, et al. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiologia Plantarum. 2003; 117(1):44-50.

Ruiz JM, Belakbir A, López-Cantarero I, et al. Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae. 1997; 71(3-4):227-234.

Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant, Cell & Environment. 2002; 25(1): 17-28.

Petropoulos SA, Olympios C, Ropokis A, et al. Fruit volatiles, quality, and yield of watermelon as affected by grafting. Journal of Agricultural science and Technology. 2014; 16(4): 873-885.

Aras V, Oluk CA, Yazici E et al. Determination of some quality and bioactive properties of" Crimson Tide" and" Pascal" watermelon varieties grafted on Obese and Tz148 Rootstocks. In VII. National Horticultural Congress. 2015; 25:29.

Solmaz I, Sarı N, Dhamir Kombo M, et al. Rootstock capacity in improving production and quality of triploid watermelon seeds. Turkish Journal of Agriculture and Forestry. 2018; 42: 298-308. doi:10.3906/tar-1801-59

Kombo MD, Sarı N, 2019. Rootstock efects on seed yield and quality in watermelon. Horticulture, Environment and Biotechnology, 60: 303-312.

Hussein S, Sari N. Effects of different rootstocks on seed yield and quality of triploid watermelon grown in greenhouse. Acta Hortic., 2020; 1282, 67-74.

Adıgüzel P, Namlı M, Nyirahabimana F, et al. The effects of grafting on plant, fruit and seed quality in cantaloupe (Cucumis melo L. var. cantalupensis) melons. Seeds; 2023; 2(1):1-14.

King SR, Davis AR, Zhang X, et al. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae. 2010; 127:106–111.

Lee J-M, Kubota C, Tsao S, et al. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae. 2010; 127: 93-105.

Adıgüzel P, Nyirahabimana F, Solmaz İ. In: Agricultural practices and sustainable management in Türkiye. Recent Developments of Grafting in Cucurbitaceae; IKSAD Publishing House: Ankara, Türkiye; 2022; p. 207.

Davis AR, Perkins-Veazie P, Sakata Y et al. Cucurbit grafting. Critical Reviews in Plant Sciences. 2008; 27: 50–74.

Kyriacou MC, Soteriou GA, Rouphael Y. Modulatory effects of interspecific and gourd rootstocks on crop performance, physicochemical quality, bioactive components and postharvest performance of diploid and triploid watermelon scions. Agronomy. 2020; 10(9):1396

Lee JM. Oda M.. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews. 2003Volume 28.

Feng C, Mo Y, Pan X et al. Effects of different root stocks on disease resistance and main economic characters in watermelon. Chinese Agricultural Science Bulletin. 2006; 22: 289-291.

Deppe C. Breed Your own Vegetable Varieties. 1st ed. Little, Brown & Company Publishing, Boston, Massachusetts. 1993.

Saeidnejad AH. Section X Growth responses of cucurbits under Stressful conditions (Abiotic and biotic stresses). Chapter 24 Physiological and biochemical responses of cucurbits to drought stress. The Handbook of cucurbits: Growth, cultural practices, and physiology. Edt. Mohammad Pessarakli. Chapter: 24. CRC Press, Taylor and Francis Group. 2016; 441-452.

Wang Y, Xie ZK, Li F. The effect of supplemental irrigation on watermelon (Citrullus lanatus) production in gravel and sand mulched fields in the Loess Plateau of northwest China. Agricultural Water Management. 2004; 69(1): 29-41. doi:10.1016/j.agwat.2004.03.007

Tomason Y, Gibson PT. Fungal characteristics and varietal reactions of powdery mildew species on cucurbits in the steppes of Ukraine. Agronomy, Research. 2006; 4: 549-562.

Gusmini G, Song R, Wehner TC. New sources of resistance to gummy stem blight in watermelon. Crop Science. 2005; 45(2):582. doi:10.2135/cropsci2005.0582

Paret ML, Dufault NS, Newark M, and et al. Management of gummy stem blight (black rot) on cucurbits in Florida. University of Florida, Plant Pathology Department, UF/IFAS Extension. 2011; August; PP280 (21/03/2025 tarihinde https://plantpath.ifas.ufl.edu/u-scout/ewExternalFiles/PP28000.pdf adresinden ulaşılmıştır).

Lessl JT, Fessehaie A, Walcott RR. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. Journal of Phytopathology. 2007; 155(2):114–121. doi:10.1111/j.1439-0434.2007.01204.x

Zitter TA, Hopkins DL, Thomas CE, 1996. Compendium of cucurbits diseases. Saint Paul, MN:14 APS Press.

Sarı N. Özel sebzecilik ders notları (Yayınlanmamış). Çukurova Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü. Adana. 1997

Yayınlanan

3 Ekim 2025

Lisans

Lisans