Kabak Yetiştiriciliği
Özet
Referanslar
Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. 2016. Phytotaxa. 261(3):201–217. doi:10.11646/phytotaxa.261.3.1
Whitaker TW, Davis GN. Cucurbits: Botany, cultivation, and utilization. New York: Interscience Publishers; 1962.
Decker-Walters, D.S. and T.W. Walters. Squash, In: Kiple KF, ve Ornelas KC, (eds.). The Cambridge world history of food. UK: Cambridge University Press; 2000. P. 335-351.
FAO, https://www.fao.org/statistics/en (Erişim tarihi: 15.04.025).
Egvga, 2024. https://egvga.eu/results/egvga-results-2024/ (erişim tarihi 05.05.2025).
Tüik, 2024. https://biruni.tuik.gov.tr/medas/?locale=tr (Erişim tarihi 16.04.2025).
Amin MZ, Islam T, Uddin MR, et al. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). 2019. Heliyon 5, e02462.
Jun HI, Lee CH, Song GS, et al. Characterization of the pectic polysaccharides from pumpkin peel. 2006. LWT-Food Science Technologies. 39: 554–561.
Roongruangsri W, Bronlund J. A review of drying processes in the production of pumpkin powder. 2015. International Journal of Food Engineering. 1: 789-799.
Salehi B, Sharifi-Rad J, Capanoglu E, et al. Cucurbita plants: From farm to industry. 2019. Applied Sciences, 9(16): 3387. https://doi.org/10.3390/app9163387
Batool M, Ranjha MMAN, Roobab U, et al. Nutritional value, phytochemical potential, and therapeutic benefits of pumpkin (Cucurbita sp.). 2022. Plants. 11(11):1394. doi: 10.3390/plants11111394.
Stevenson DG, Eller FJ, Wang L, Jane JL, Wang T, Inglett GE. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. 2007. Journal of Agricultural and Food Chemistry. 16;55(10): 4005-13. doi: 10.1021/jf0706979. Epub 2007 Apr 18. PMID: 17439238.
Devi NM, Prasad RV, Sagarika NA. Review on health benefits and nutritional composition of pumpkin seeds. 2018. International Journal of Chemical Studies. 6: 1154–1157.
14.Tejada L, Buendía-Moreno L, Villegas A, et al.2020) Nutritional and sensorial characteristics of zucchini Cucurbita pepo L.) as affected by freezing and the culinary treatment. 2020. International Journal of Food Properties. 23(1):1825-1833, DOI: 10.1080/10942912.2020.1826512
USDA, Pumpkin, Raw. Available online: 2022. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients (accessed on 23 March 2025).
Ghosh P, Rana SS. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of Pumpkin flower (Cucurbita maxima), as a potential functional food. 2021. SN Applied Science. 3: 216. doi.org/10.1007/s42452-020-04092-0
Loy JB. Breeding squash and pumpkin. In: Cseke LJ, Kirokasyan A, KaufmanPB, et al (eds). Genetics, Genomics and Breeding of Cucurbita. Oxford UK: CRC Pres; 2011. p. 93-139.
Himani Ruwanthika KOG, Mayuri MLA, Munasinghe S, et al. Overview of Cucurbita spp. (pumpkin) and development of value-added products emphasizing its nutritional and chemical composition. 2023. World Journal of Advanced Research and Reviews. 18(02): 1215-1226.
Paris HS, Doron-Faigenboim A, Reddy UK, et al. Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with high frequency oligotide-targeting active gene (HFO–TAG) markers. 2015. Genetic Resources and Crop Evolution. 62: 1095-1111.
Swamy KRM. Origin, distribution, taxonomi, botanical description, genetic, genetic diversity, and breeding of pumpkins and squashes (Ccuurbita spp). 2022. International Journal of Current Research. 14 (11): 22860-22877.
Sekerci AD, Karaman K, Yetisir, H. et al. Change in morphological properties and fatty acid composition of ornamental pumpkin seeds (Cucurbita pepo var. ovifera) and their classification by chemometric analysis. 2017. Food Measure 11, 1306–1314. https://doi.org/10.1007/s11694-017-9508-3
López-Anido, F.S. Diversidad morfológica y molecular en Cucurbita maxima Duchesne ex Lam. Ph.D. Thesis, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina, 2017.
Paris HS, Brown Rn. The genes of pumpkin and squash. 2005. HortScien Annual Review of Entomology, 28(1): 141–160.ce 40: 1620-1630.
López-Anido FS Cultivar-Groups in Cucurbita maxima Duchesne: Diversity and possible domestication pathways. 2021. Diversity, 13(8): 354. https://doi.org/10.3390/d13080354
Formiga AK, Myers JR. Images and descriptions of Cucurbita maxima in Western Europe in the sixteenth and seventeenth centuries. 2020. Plant Breeding. Reviews. 43: 317–356.
Cummings MB, Jenkins EW. Pure lines studies with ten generations of hubbard squash. Burlington VT, USA: Free Press Printing Co. 1928.
Castetter EF. Horticultural groups of Cucurbita. 1925. Proc. Am. Soc. Hortic. Sci. 22: 338–340.
Cumarasamy R, Corrigan V, Hurst P, et al. Cultivar differences in New Zealand "Kabocha" (buttercup squash, Cucurbita maxima). 2002. New Zealand Journal of Crop and Horticultural Science. 30(3):197-208.
Aguilar-Gutiérrez F, Zazueta-Morale, JJ, Camacho-Hernández IL. Caracterización química, física, funcional nutrimental de la calabaza cehualca (Cucurbita moschata D.) cv Cehualca Integral. Tesis de maestría. Maestría en Cienciay Tecnología de Alimentos, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa. 2009.
Doymaz I. The kinetics of forced convective air-drying of pumpkin slices. 2007. Journal of Food Engineering. 79: 243–248.
Lira SR, Montes HS. Cultivosmarginados otra perspectiva de 1492. La agricultura en Mesoamérica. Cucúrbita (Cucurbita spp.). 1992. Cultivos Andinos-FAO Accessed on:
http://www.rlc.fao.org/es/agricultura/produ/cdrom/contenido/libro09/Cap2_3.htm#auto
Jacobo-Valenzuela, N., Zazueta-Morales, J. De J., Gallegos-Infante, J. A., Aguılar-Gutıerrez, F., Camacho-Hernandez, I. L., Rocha-Guzman, N. E., & Gonzalez-Laredo, R. F. Chemical and physicochemical characterization of winter squash (Cucurbita moschata D.). 2011. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 34–40. https://doi.org/10.15835/nbha3915848
Richardson JB. The Pre-Columbian distribution of the bottle gourd (Lagenaria siceraria): a re-evaluation. 1972. Economic Botany. 26: 265-73.
Erickson DL, Smith BD, Clarke AC, et al. An Asian origin for a 10,000-year-old domesticated plant in the Americas. 2005. PNAS USA. 102:18315–20.
Janick J, Paris HS, Parrish DC. The cucurbits of mediterranean antiquity: identification of taxa rom ancient images and descriptions. 2007. Annals of Botany. 100:1441–57.
Yetisir H, Sakar M, Serce S. Collection and morphological characterization of Lagenaria siceraria germplasm from the Mediterranean region of Turkey. 2008. Genetic Resources and Crop Evolution. 55, 1257-1266. 10.1007/s10722-008-9325-y
Minocha S. An overview on Lagenaria siceraria (Bottle gourd). 2015. Journal of Biomedical and Pharmaceutical Research. 4:4–10.
Heiser Jr CB. The gourd book. Norman: University of Oklahoma Press; 1979.
Morimoto Y, Maundu P, Fujimaki H, et al. Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: fruit and seed morphology. 2005. Genetic Resources and Crop Evolution. 52:737-47.
Robinson RW. Decker-Walters DS. Cucurbits. New York: CAB International; 1997.
Bates DM, Robinson RW, Cucumbers. melons and watermelons. In: Smart J, Simmonds NW. (Ed) Evolution of crop plants. 2nd ed. Harlow: Longman; 1995. p. 89–96.
Ekeke C, Ogazie C A,d Agbagwa O. Anatomical and phytochemical studies on Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae). 2019. Notulae Scientia Biologicae. 11(1): 102–111. https://doi.org/10.15835/nsb11110394
Rubatzky VE, Yamaguchi M. Chinese winter melon / wax gourd Benincase hispida (Thunb.) Cogn. In: Rubatzky VE, Yamaguchi M, (eds). World Vegetables: principles production. and nutritive values. 1997. London: Chapman Hall; 1997. p. 625-627.
Moreira F A. Chayote: Pre-columbian origins and dispersal. 2015. Horticultural Review. 43: 89-143. doi: 10.1002/9781119107781.CH02
Singh D. 10 Cucurbits. Underutil. Underexp. 2007. Horticultural Crop. 2:e175.
Pu YT, Luo Q, Wen LH, et al. Origin, evolution, breeding, and omics of chayote, an important Cucurbitaceae vegetable crop. 2021. Frontier Plant Science. 12:739091. doi: 10.3389/fpls.2021.739091
Du Z, Qu F, Zhang C, et al. Multi-omics analyses unravel metabolic and transcriptional differences in tender shoots from two Sechium edule varieties. 2023. Current Issues in Molecular Biology 45: 9060-9075. https://doi.org/10.3390/cimb45110568
Lim TK. Sechium edule. Edible medicinal and non-medicinal plants. 2012. Berlin: Springer: 384–391.
Vieira EF, Pinho O, Ferreira IM, et al. Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. 2019. Food Chemistry. 275, 557–568. doi: 10.1016/j. foodchem.2018.09.146
Quezada-Euán JJG. Stingless bees of mexico (the biology, management and conservation of an ancient heritage) services provided by stingless bees. New York: Springer 2018.
Joshi BK, Shrestha S, Adhikri B, et al. Traditional practices and genetic diversity on chayote landraces and their conservation. 2020. Sustainable Development. 10: 272–288. doi: 10.31924/nrsd.v10i2.060
Saade RL. Chayote, Sechium edule (Jacq.). Sw. Biovers. Rome: IPK and IPGRI; 1996.
Newstrom LE. Studies in the origin and evolution of chayote, Sechium Edule (Jacq.) Sw. (Cucurbitaceae). Ph.D. Thesis, Berkeley: University of California; 1986.
Gong Y, Wei Y, Zhou G, et al. The complete chloroplast genome of white towel gourd (Luffa cylindrica) and phylogenetic analysis. 2024 Genetic Resources and Crop Evolution. 71: 3315–3329. https://doi.org/10.1007/s10722-023-01842-y.
Sahayaraj AF, Muthukrishnan M, Jenish I. Extraction and characterization of sponge gourd outer skin fiber. 2023. Journal of Natural Fibers. 20 (2). https://doi.org/10.1080/ 15440478.2023.2208888.
56 Mashilo J, Shimelis H, Ngwepe M R. Genetic improvement and innovations of sponge gourd (Luffa cylindrica L.): An opportunity crop. 2025. Industrial Crops and Products. 225: 120430.
Tyagi R, Bhardwaj R, Suneja P et al. Harnessing sponge gourd: an alternative source of oil and protein for nutritional security. 2023. Frontiers in Nutrion. 10. DOI=10.3389/fnut.2023.1158424.
Ünlükara A. Kabak su ilişkileri ve sulama stratejisi. 2014. Çerezlik Kabak Çalıştayı, 67-80.
Ding W, Wang Y, Qi C, et al. Fine mapping identified the gibberellin 2-oxidase gene CpDw leading to a dwarf phenotype in squash (Cucurbita pepo L.). 2021. Plant Sci, 306, 110857.
Eşiyok D. Kışlık ve Yazlık Sebze Yetiştiriciliği. İzmir: Ege Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü.; 2012. p. 313-322.
Kurtar S, Influence of gamma irradiation on pollen viability, germination and fruit and seed set of pumpkin and winter squash. 2009. African Journal of Biotechnology. 8(24): 2918-6926.
Sadia H, Malik K, Qureshi R, et al. Pollen morphology of Cucurbitaceae using microscopic techniques for accurate taxa identification. 2025. Genetic Resources and Crop Evolution. doi.org/10.1007/s10722-025-02344-9
Abbey L, Cucurbits physiological stages of growth. In: Pessaraki M (Ed) Hand Book of Cucurbits: Growth Cultural Practices and Physiology. Boca Raton: CRC Pres; 2016. p. 151-169.
Megharaj KC, Ajjappalavara PS, Revanappa DC, et al. Sex manipulation in cucurbitaceous vegetables. 2017. International Journal of Current Bacteriology and Applied Science. 6(9): 1839-1851. doi: https://doi.org/10.20546/ijcmas.2017.609.227
Pe´rin C, Hagen LS, Giovinazzo N, et al. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). 2002. Molecular Genetics and Genomics. 266: 933–941.
Zraidi A, Pachner M, Lelley T, et al. On the genetics and histology of the Hull-less character of Styrian Oil-Pumpkin (C. pepo L.), 2003. Cucurbit Genetic Cooperative. 26:57-61.
Xianglin Z. A study of the breeding of naked kernel pumpkin and its genetic behavior, 1987. Acta Horticulturae. Sinica. 14:115-118.
Taylor AG. Seed storage, germination and quality. In: Wien HC. (ed). The physiology of vegetable crops. New York: CAB International;1997. p. 1-36.
Wien HC. The cucurbits: cucumber, melon, squash and pumpkin. In: Wien HC, Stutzel H, (eds). The physiology of vegetable crops. Wallingford Oxon: CABI; 1997, p 345-386.
Ünlükara A, Bakır R. Birinci ve ikinci ürün çerezlik kabağın (Cucurbita pepo L.) su kullanımı ve veriminin belirlenmesi. 2018. Ziraat Fakültesi Dergisi. 309-318.
Maynard L. Cucurbit crop growth and development. In Indiana CCA Conference Proceedings. West Lafayette, IN, USA: Purdue University; 2007.
Halloran N, Kasım MU. Meyve ve sebzelerde büyüme düzenleyici madde kullanımı ve kalıntı düzeyleri. 2002. Gıda, 27(5): 351-359.
Hess M, Bill M, Jason S, et al. Oregon State University western oregon squash ırrigation guide, vol. 541. Department of Bioresource Engineering, Corvallis, OR, 1997.
Doğru S. Selekte edilmiş ileri kademelerde çerezlik kabak (Cucurbita pepo L.) hatlarının tuz stresine toleranslarının belirlenmesi. Yüksek LisansTezi, Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı. 2024.
Motes J, Roberts W, Damicone J, et al. Squash and pumpkin production. 2013. Oklahoma Cooperative Extension Service, HLA-6026-2, 3p. http://pods.dasnr.okstate.edu/docushare/dsweb/Get/
Loy JB. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). 2004. Critical Review of Plant Science. 23(4): 337-363.
Adams, P. Nutritional control in hydroponics. In: Savvas D, Passam H (Ed) Hydroponic production of vegetables and ornamentals. 2002. Athens: Embriyo Publication; p. 213-264.
Amer K H. Effect of irrigation method and quantity on squash yield and quality. 2011. Agricultural Water Management. 98 (7): 1197–1206.
Ertek A, Şensoy S, Küçükyumuk C, et al. Irrigation frequency affects yield of summer squash. 2004. Agricultural Water Management. 67(1): 63–76.
Kopczyńska K, Kazimierczak R, Średnicka-Tober D, et al. The effect of organic vs. conventional cropping systems on the yield and chemical composition of three courgette cultivars. 2020. Agronomy. 10(9): 1341; https://doi.org/10.3390/agronomy10091341.
Günay A. Sebze Yetiştiriciliği Cilt 2. İzmir: Meta Yayıncılık; 2005.
Kuslu Y, Sahin U, Kiziloglu F M, et al. Fruit yield and quality, and irrigation water use efficiency of summer squash drip-irrigated with different irrigation quantities in a semi-arid agricultural area, 2014. Journal of Integrative Agriculture 13(11): 2518-2526.
Paris HS. Summer squash: history, diversity, and distribution. 1996. HortTechnology. 6(1): 6-13.
Akbunar A B N, Akbudak N. Sakız Kabağında (Cucurbita pepo L.) Meyve verimi ve kalitesi üzerine farklı sulama seviyesi uygulamalarının etkisi. 2023. Muş Alparslan University Journal of Agriculture and Nature. 3(1): 16-26.
Şalk A, Arın L, Deveci M. et al. Özel sebzecilik. Tekirdağ: Namık Kemal Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü; 2008.
Şavkan A N, Türkmen Ö. Morphological Characterization and Selection in Some Summer Squash (Cucurbita pepo L.) Genotypes. 2023. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 33(4): 665–674.
Özmen MC. Mersin ili yazlık kabak (Cucurbita pepo L.) çeşitlerinin verim ve kalite özelliklerinin değerlendirilmesi. Yüksek Lisans Tezi. Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa. 2023
Megías Z, Martínez C, Manzano S, et al. Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita pepo). 2016. Postharvest Biology and Technology. 113: 48-57.
Nacar Ç. Yazlık Kabak Yetiştiriciliği. T.C. Gıda, Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, Alata Bahçe Kültürleri Araştırma Enstitüsü Erdemli-Mersin. 2015.
Katzir N, Levi A, Burger Y, et al. Evaluation of virus resistance in Cucurbita species. 1999. Plant Disease. 83(9): 775-780.
91 Alhariri A, Paris HS, Levi A, et al. Advances in genetic resistance to viruses in summer squash (Cucurbita Pepo L.): A review. 2004. Horticulture Research. 11(1): 1–15. https://doi.org/10.1093/hr/uhad128
Balkaya, A., Kurtar, E., Yanmaz, R. et al. 2011, Karadeniz bölgesi kestane kabağı (Cucurbita maxima) populasyonlarından seleksiyon ıslahı yoluyla geliştirilen çeşit adayları, Türkiye IV. Tohumculuk Kongresi. Bildiriler Kitabı 11-14 Haziran 2011 Samsun. p 17-22.
Babaoğlu D. Batı Anadolu kışlık kabak türlerine (Bal Kabağı (Cucurbita moschata Duch.) ve kestane kabağı (Cucurbita maxima Duch.) ait gen kaynaklarının derlenmesi, tanımlanması ve çeşit adaylarının belirlenmesi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı. Doktora Tezi. 2021.
Rana M, Rasul M, Islam A. et al. Diallel analysis of quality and yield contributing traits of pumpkin (Cucurbita moschata Duch. ex Poir.). 2016. Scientific Journal of Krishi Foundation The Agriculturists, 14(1): 15-32.
Paris HS. Summer squash. In Prohens J, Nuez F, (eds) Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae. New York, NY: Springer New York; 2008. p. 351-379.
Tzortzakis N, Chrysargyris A, Petropoulos S. Phytochemicals content and health effects of cultivated and underutilized species of the Cucurbitaceae family. In: Spyridon A, Petropoulos Isabel CFR, Ferreira Lilian Barros (eds), Phytochemicals in Vegetables: A Valuable Source of Bioactive Compounds. Amsterdam: Bentham Science Publishers 2018. p. 99-165.
Thompson JF, Mitchell FG, Rumsey TR. et al. Commercial cooling of fruits, vegetables and flowers. Davis: University of California's Agriculture and Natural Resources; 1998.
Yanmaz, R., Düzeltir, B. Çekirdek kabağı yetiştiriciliği. Ankara: Türk-Koop Ekin, Tarım Kredi Kooparatifi Merkez Bilgi Yayınları; 2003. p. 22-24.
Nacar Ç, Aras V, Yanmaz R. Çerezlik kabak yetiştiriciliği ve Ege Bölgesi’ne uygun çeşitler. 2010. Ege Tarımsal Araştırma Enstitüsü. Yayın No: 139: 33-39.
Fidan S. Türkiye’de Çerezlik Kabak Yetiştiriciliği. Çerezlik Kabak Çalıştayı, 26-27 Kasım 2014, Kayseri, p 57-68.
Ermiş S. Ekolojinin kabuklu ve kabuksuz çekirdek kabak (Cucurbita pepo L) hatlarında tohum verimi ve çerezlik kalitesine etkisi. Doktora tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı. 2010.
TTSM, 2025. https://www.tarimorman.gov.tr/BUGEM/TTSM (erişim tarihi 09.05.2025).
Bayram ME. Kestane Kabağı yetiştiriciliği. Ders Notları, Antalya İl Tarım ve Orman Müdürlüğü. 2023.
Yetişir H, Boyacı HF, Şekerci Dalda A, et al. Yazlık Sebzelerde Fide Yetiştiriciliği, In Yetisir H, Ellialtıoglu. Sebezelerde Fide Yetiştiriciliğ-2 , Ankara: Gece Kitaplığı; 2022. p.71-126.
Baktemur G, Kara E. Kabak (Cucurbita pepo L.) Yetiştiriciliği. In: Baktemur G. (Ed). Sebze Yetiştiriciliği, 2023. Adıyaman: İKSAD Yayınları; 2023. p. 183–202.
Zhang C, Li X, Yan,H, et al. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. 2020. Agricultural Water Management. 241, 106263.
Chen Y, Zhou X, Lin Y, et al. Pumpkin yield affected by soil nutrients and the ınteractions of nitrogen, phosphorus, and potassium fertilizers. 2019. HortScience, 54(10): 1831–1835.
Yekula B, Thakur O, Thakur P. A review on response of organic and ınorganic manures on Cucurbits. 2023. International Journal of Advanced Biochemistry Research. 7(2): 510-516.
Öztaş Ö, Yaşar F. Kabakgillerin Besin Gereksinimleri ve Gübreleme. Yaşar F, Üzal Ö, (eds). Farklı Yönleriyle Kabakgiller Üzerine Bilimsel Çalışmalar içinde. Adıyaman: İksad Yayınevi; 2024. s. 148-198.
Ulusay, N. Çerezlik kabak ve atıklarının kullanım alanları ve ekonomik etkisi: nevşehir örneği. Yüksek lisans tezi). Nevşehir Hacı Bektaş Veli Üniversitesi, Sosyal Bilimler Enstitüsü, İktisat Anabilim Dalı: Nevşehir; 2019.
Richard M, Jose A, Mark G. et al. Spring squash production in California. California: Vegetable Research and Information Center, Vegetable Reproduction Series; 2002.
Ahmet E, Suat S, Cenk K, et al. Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.). 2004. Agricultural Water Management. 67(1): 63-76.
Tagem SUET 2025. https://tagemsuet.tarimorman.gov.tr/plantWaterConsumption/plantIrrigation (Erişim tarihi 16.04.2025).
Lecoq H, Desbiez C. Viruses of Cucurbit crops in the Mediterranean region an ever-changing picture. In: Loebenstein G, Lecoq H. (eds). 2012. Advances in Virus Research. Academic Press; p 67–126. https://doi.org/10.1016/B978-0-12-394314-9.00003-8.
Desbiez C, Lecoq H. Zucchini Yellow Mosaic Virus. 1997. Plant Pathology, 46(6): 809–829.
Paris HS, Cohen S, Burger Y, et al. Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. 1998. Euphytica 37, 27–29. https://doi.org/10.1007/BF00037219
Palukaitis P, Roossinck MJ, Dietzgen R, et al. Cucumber Mosaic Virus. 1992. Advances in Virus Research. 41: 281–348.
Desbiez C, Wipf-Scheibel C, Millot P, et al. Distribution and evolution of the major viruses infecting cucurbitaceous and solanaceous crops in the french Mediterranean area. 2020. Virus Res. 286:198042. https://doi.org/ 10.1016/j.virusres.2020.198042.
Gonsalves D. Control of papaya ringspot virus in papaya: a case study. 1998. Annual Review Phytopathol. 36:415-37. doi: 10.1146/annurev.phyto.36.1.415. PMID: 15012507.
Zitter T A, Hopkins D L, Thomas C E. Compendium of Cucurbit diseases. MN, USA: APS Press, St. Paul; 1996.
Keinath A P. Environmental factors affecting development and management of soilborne diseases in Cucurbits. 2010. Crop Protection, 29(9): 1112-1117.
McGovern R J. Management of soilborne plant pathogens with organic amendments. 2015. Plant Pathology Journal. 14(3): 180-189.
Sabaou N, Gacem MA, Guessas B. Biocontrol potential of native soil fungi against Fusarium oxysporum causing wilt in Cucurbits. 2021. Biological Control. 160: 104690.
McGrath M T, Staniszewska H. Powdery mildew development under different environmental conditions.1996 Plant Disease, 80(11): 1241–1245.
Bertrand D, Aubriot X, Caromel B, et al. Genetic resistance to powdery mildew in cucurbits: advances and prospects. 2018. Euphytica, 214(10): 181-200.
Keinath A P. Antracnose of Cucurbits: Pathogen biology and disease management. 2008. Plant Health Progress. 9(1): 16-20. DOI: 10.1094/PHP-2008-0118-01-RV.
Sherf AF, MacNab A A. Vegetable diseases and their control (2. baskı). London: John Wiley & Sons; 1986.
Lebeda A, Cohen Y, Cucuzza L. (2006). Biology, pathogenicity and control of cucurbit downy mildew caused by Pseudoperonospora cubensis. 2006. Acta Horticulturae. 731: 223-230. DOI: 10.17660/ActaHortic.2007.731.28.
Cohen Y, Rubin AE, Galperin M, el. Molecular tracking of downy mildew epidemics in Cucurbits. 2007. Plant Disease, 91(7): 691–697. DOI: 10.1094/PDIS-91-7-0691
Lebeda A, Sedláková B, Louda M. Breeding Cucurbits for downy mildew resistance: Current status and perspectives. 2011. European Journal of Plant Pathology, 129 (1): 135-146. DOI: 10.1007/s10658-010-9685-3.
Gao Y, Lei Z, Reitz SR. Integrated pest management strategies for vegetable production in China. 2009. Crop Protection, 28(8): 712–722. DOI: 10.1016/j.cropro.2009.04.008
Parrella MP, Kei CB, Robb KL. Biology of Liriomyza. 1983. Annual Review of Entomology. 28(1): 141–160. DOI: 10.1146/annurev.en.28.010183.001041.
Lowery DT, Boivin G. Indigenous biological control of aphids. 2009. Annual Review of Entomology. 54(1): 485–503. DOI: 10.1146/annurev.ento.54.110807.090618.138
Bolland HR, Gutierrez J, Flechtmann CHW. World catalogue of the spider mite family (Acari: Tetranychidae). Boston: Brill Academic Publishers. 1998.
Oliveira MRV, Henneberry TJ, Anderson P. History, current status, and collaborative research projects for bemisia tabaci. 2001.Crop Protection, 20(9): 709-723. DOI: 10.1016/S0261-2194(01)00108-9.
Riley DG, Joseph SV, Srinivasan R. et al. Thrips vectors of tospoviruses. 2011. Journal of Integrated Pest Management. 2(1): 1-10. DOI: 10.1603/IPM10020.
137 Kogan M. Integrated pest management: Historical perspectives and contemporary developments. 1998. Annual Review of Entomology, 43(1): 243–270. DOI: 10.1146/annurev.ento.43.1.243.
Pedigo LP, Rice M E, Entomology and Pest Management (5th ed.). New Jersey: Pearson Prentice Hall; 2006.
van Lenteren JC. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. 2012. BioControl, 57(1), 1–20. https://doi.org/10.1007/s10526-011-9395-1.
Binns M R, Nyrop J P. Sampling insect populations for the purpose of IPM decision making. 1992. Annual Review of Entomology, 37(1): 427–453. ttps://doi.org/10.1146/annurev.en.37.010192.002235
Culpepper CW. Composition of summer squash and its relationship to variety, stage of maturity, and use as a food product. 1937. Journal of Food Science. 2(4): 289-303. doi.org/10.1111/j.1365-2621.1937.tb16520.x
Paris HS, Edelstein M. Same gene for bush growth habit in Cucurbita pepo spp. pepo as in C. pepo ssp ovifera. 2001. Report-Cucurbit Genetics Cooperative, 24, 80-81.
Baggett JR. Open growth habit in summer squash 1. 1972. HortScience. 7(3): 288-288.
Sinnott EW, Durham GB. Developmental history of the fruit in lines of Cucurbita pepo differing in fruit shape. 1929. Botanical Gazette. 87(3): 411-421.
Paris HS. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. 2016. Euphytica. 208: 415-438.
McCollum TG. Gene B influences susceptibility to chilling injury in Cucurbita pepo. 1990. Journal of the American Society for Horticultural Science. 115(4): 618-622.
Ferriol M, Picó B, Nuez F. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. 2004. Journal of the American Society for Horticultural Science. 129(1): 60-69.
Aslan İ, Balkaya A, Karaağaç O, et al. Yerel kestane kabağı (Cucurbita maxima Duch.) çeşit adaylarının Samsun ilinde farklı lokasyonlarda verim unsurları ve meyve kalite özellikleri yönünden performanslarının incelenmesi. 2019. Yuzuncu Yıl University Journal of Agricultural Sciences. 29(2): 318-329.
Bhella HS. Muskmelon growth, yield, and nutrition as influenced by planting method and trickle irrigation. 1985. J. Amer. Soc. Hort. Sci. 110(6): 793-796.
Fabeiro C, Martin de Santa Olalla F, DeJuan JA. Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate. 2002. Agricultural Water Management. 54(2): 93-105.
Tarus W J, Ochuodho J O, Rop NK. Influence of harvesting stage on seed quality aspects of pumpkin (Cucurbita pepo L.). 2017. Journal of Experimental Agriculture. 18(2): 1-9.
Robinson, RW, Whitaker TW, Bohn GW. Promotion of pistillate flowering in Cucurbita by 2- cloroethyl phosponic acid,1978. Euphytica, 19:180-183.