Marul ve Salata Yetiştiriciliği

Yazarlar

Boran İkiz
Şule Kökpınar

Özet

Bu bölümde, Lactuca sativa L. türüne ait marul ve salataların botanik özellikleri, ekolojik istekleri, yetiştirme sistemleri, ıslah hedefleri ve hastalık-zararlı yönetimi ayrıntılı biçimde ele alınmaktadır. Serin iklim sebzeleri grubunda yer alan marulların düşük kalori içermelerine rağmen K vitamini, folat, provitamin A ve fenolik bileşiklerce zengin oldukları vurgulanmaktadır. Bu bölümde ayrıca, optimum gelişme koşulları açıklanmakta olup marul için ideal sıcaklık aralığı 20–24 °C olarak belirtilmektedir. Yüksek sıcaklıkların sapa kalkma ve kalite kaybına yol açtığı, toprak pH’sının 5.5–6.5 aralığında, tuzluluk düzeyinin ise 1.8 dS m⁻¹’in altında olması gerektiği ifade edilmektedir. Marul üretiminin açık alanlarda, seralarda veya topraksız sistemlerde (özellikle NFT) gerçekleştirilebildiği, topraksız kültürde kullanılan besin çözeltileri ve biyostimülant uygulamalarının (örneğin vermikompost, hümik asit) verim ve antioksidan içeriğini artırdığı belirtilmektedir. Islah çalışmalarına ilişkin olarak bu bölümde, yüksek verim, geç sapa kalkma, hastalıklara dayanıklılık ve besin değerinin iyileştirilmesi gibi hedeflerin ön planda olduğu açıklanmaktadır. Ayrıca marul üretiminde görülen başlıca fungal (ör. Bremia lactucae, Botrytis cinerea), bakteriyel (Xanthomonas hortorum) ve viral (TSWV, LMV) hastalık etmenleri ile zararlılar (yaprak bitleri, thripsler) nedeniyle oluşan kayıplar da tartışılmaktadır. Entegre mücadele stratejileri, biyolojik kontrol ajanlarının kullanımı ve dayanıklı çeşitlerin geliştirilmesinin önemi vurgulanmakta; uygun iklim yönetimi, dengeli besleme ve hızlı soğuk zincir uygulamalarının kaliteli ve sürdürülebilir marul üretimi için temel unsurlar olduğu ortaya konmaktadır.

Referanslar

Zhang, B., Xue, Y., Liu, X., et al. (2024). A near-complete chromosome-level genome assembly of looseleaf lettuce (Lactuca sativa var. crispa). Scientific Data, 11, 961. https://doi.org/10.1038/s41597-024-03830-y

Medina-Lozano, I., Grimplet, J., & Díaz, A. (2025). Harnessing the diversity of a lettuce wild relative to identify anthocyanin-related genes transcriptionally responsive to drought stress. Frontiers in Plant Science, 15, 1494339. https://doi.org/10.3389/fpls.2024.1494339

FAOSTAT. (2024). Production/yield quantities of lettuce and chicory in world + (total). Retrieved May 16, 2024, from https://www.fao.org/faostat/en/#data/QCL/visualize

Pink, D. A. C., & Keane, E. (1993). Origin and evolution of lettuce. In G. Kalloo & B. Bergh (Eds.), Genetic improvement of vegetable crops (pp. 543–571). Pergamon Press.

de Vries, I. M. (1997). Origin and domestication of Lactuca sativa L. Genetic Resources and Crop Evolution, 44, 165–174.

USDA. (n.d.). FoodData Central: FDC ID 169247. U.S. Department of Agriculture. Retrieved [7.9.2025], from https://fdc.nal.usda.gov/fdc-app.html#/food-details/169247/nutrients

USDA. (n.d.). FoodData Central: FDC ID 169248. U.S. Department of Agriculture. Retrieved [erişim tarihi: 7.9.2025], from https://fdc.nal.usda.gov/fdc-app.html#/food-details/169248/nutrients

Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils. Academic Press.

Niklas, K. J. (1992). Plant biomechanics. University of Chicago Press.

Gazula, A., Kleinhenz, M. D., Streeter, J. G., & Miller, A. R. (2005). Temperature and cultivar effects on anthocyanin and chlorophyll b concentrations in three related Lollo Rosso lettuce cultivars. HortScience, 40(6), 1731–1733.

Gordon, P. D. (1995). Asteraceae, cladistics & classification.

Han, R., Truco, M. J., Lavelle, D. O., & Michelmore, R. W. (2021). A composite analysis of flowering time regulation in lettuce. Frontiers in Plant Science, 12, 632708.

Gent, M. P. N. (2014, August). Effect of temperature on composition of hydroponic lettuce. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): 1123 (pp. 95–100). https://doi.org/10.17660/ActaHortic.2016.1123.13

Carotti, L., Graamans, L., Puksic, F., Butturini, M., Meinen, E., Heuvelink, E., & Stanghellini, C. (2021). Plant factories are heating up: Hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce production. Frontiers in Plant Science, 11, 592171. https://doi.org/10.3389/fpls.2020.592171

Tarr, S. T., & Lopez, R. G. (2025). Influence of day and night temperature and carbon dioxide concentration on growth, yield, and quality of green butterhead and red oakleaf lettuce. PLoS ONE, 20(2), e0313884. https://doi.org/10.1371/journal.pone.0313884

Wei, J., Zhang, Q., Zhang, Y., Yang, L., Zeng, Z., Zhou, Y., & Chen, B. (2024). Advance in the thermoinhibition of lettuce (Lactuca sativa L.) seed germination. Plants, 13(15), 2051. https://doi.org/10.3390/plants13152051

Dasgan HY, Yilmaz D, Zikaria K, Ikiz B, Gruda NS. Enhancing the Yield, Quality and Antioxidant Content of Lettuce through Innovative and Eco-Friendly Biofertilizer Practices in Hydroponics. Horticulturae. 2023; 9(12):1274. https://doi.org/10.3390/horticulturae9121274

Keskin B, Akhoundnejad Y, Dasgan HY, Gruda NS. Fulvic Acid, Amino Acids, and Vermicompost Enhanced Yield and Improved Nutrient Profile of Soilless Iceberg Lettuce. Plants. 2025; 14(4):609. https://doi.org/10.3390/plants14040609

UC IPM. (2023). Lettuce pest management guidelines. University of California Agriculture.

Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 195–222). Springer.

Fillinger, S., & Elad, Y. (Eds.). (2016). Botrytis—the fungus, the pathogen and its management in agricultural systems (Vol. 486). Springer.

Larkin, R. P. (2013). Green manures and plant disease management. CABI Reviews, 1–10.

Whipps, J. M., & Lumsden, R. D. (2001). Commercial use of fungi as biocontrol agents. In T. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents. CABI.

Matheron, M. E., & Porchas, M. (2010). Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Disease, 94(11), 1323–1328.

Perombelon, M. C. M., & Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18, 361–387.

Bull, C. T., & Koike, S. T. (2005). Evaluating the efficacy of commercial products for management of bacterial leaf spot on lettuce. Plant Health Progress, 6(1), 3.

Pappu, H. R., Jones, R. A. C., & Jain, R. K. (2009). Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Research, 141(2), 219–236.

Dinant, S., & Lot, H. (1992). Lettuce mosaic virus. Plant Pathology, 41(5), 528–542.

Whatty, M., & Collier, R. (2023). The impact of the EU neonicotinoid ban on UK carrot and lettuce production and prospects for future aphid management. Outlooks on Pest Management, 34(1), 20–29.

UC IPM. (2023). Lettuce pest management guidelines. University of California Agriculture.

Capinera, J. L. (2020). Handbook of vegetable pests. Academic Press.

Shapiro-Ilan, D. I., Stuart, R. J., & McCoy, C. W. (2006). A comparison of entomopathogenic nematode longevity in soil under laboratory conditions. Journal of Nematology, 38(1), 119.

Beşirli, G., Sönmez, İ., Albayrak, B., & Polat, Z. (2021). Organik marul yetiştiriciliği. Tarım ve Orman Bakanlığı, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü, 45.

Cantwell, M., & Suslow, T. (2002). Lettuce: Recommendations for maintaining postharvest quality. UC Davis Postharvest Technology Center. https://postharvest.ucdavis.edu/commodity-resources/fact-sheets/

Kader, A. A. (Ed.). (2002). Postharvest technology of horticultural crops (3rd ed.). University of California Agriculture and Natural Resources, Publication 3311.

Suslow, T. V. (2003). Key points of control and management for microbial food safety: Information for growers, packers, and handlers of fresh-consumed horticultural products.

Ryall, A. L., & Lipton, W. J. (1972). Handling, transportation, and storage of fruits and vegetables. Volume 1. Vegetables and melons.

Thompson, J. F. (2004). Pre-cooling and storage facilities. In K. C. Gross, C. Y. Wang, & M. Saltveit (Eds.), The commercial storage of fruits, vegetables, and florist and nursery stocks (pp. 1–11). USDA.

McDonald, K., & Sun, D.-W. (2000). Vacuum cooling technology for the food processing industry: A review. Journal of Food Engineering, 45(2), 55–65.

Yayınlanan

3 Ekim 2025

Lisans

Lisans