Demir Metabolizmasi ve Kas Sağlığı Arasındaki İlişki

Özet

Bu bölüm, demir metabolizması ile kas sağlığı arasındaki çift yönlü ilişkiyi özetler. Demirin emilimi ve taşınmasında DMT1, ferroportin, transferrin–TfR1 ekseni ve hepsidin aracılı düzenleme anlatılır; kas lif tipleri ve mitokondri yoğunluğu bağlamında oksidatif fosforilasyonun demir-bağımlı bileşenleri (hem grupları, Fe-S kümeleri) vurgulanır. Demir eksikliği; ATP üretimi, egzersiz toleransı ve kas gücünde azalma ile ilişkilendirilir; kalp yetersizliği ve yaşlanmada sarkopeni riskini artırabilir. Aşırı demir birikimi ise ROS artışı, lipid peroksidasyonu ve ferroptozis yoluyla kas dejenerasyonunu tetikleyebilir. Klinik kısım; ferritin, transferrin satürasyonu ve sTfR gibi göstergelerle durum tespitini; uygun olgularda oral/IV demir desteğinin performans ve yaşam kalitesi üzerindeki etkilerini; bireyselleştirme gereğini ve aşırı yük riskini tartışır. Gelecek perspektifi; hepsidin/sTfR gibi biyobelirteçler, T2* MRI ile doku demiri görüntüleme ve ferroptozis hedefli yaklaşımları içerir.

Referanslar

K. C, G. I, Koutedakis Y, Z. A. Iron Supplementation and Physical Performance [Internet]. Current Issues in Sports and Exercise Medicine. InTech; 2013. Available from: http://dx.doi.org/10.5772/55461

Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res. 2025 Feb 25;13(1):27. doi: 10.1038/s41413-024-00398-6. PMID: 40000618; PMCID: PMC11861620.

Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016 Jul;18(7):762-73. doi: 10.1002/ejhf.467. Epub 2016 Jan 21. PMID: 26800032.

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17(2), 162–184.

van der Meer P, van der Wal HH, Melenovsky V. Mitochondrial Function, Skeletal Muscle Metabolism, and Iron Deficiency in Heart Failure. Circulation. 2019 May 21;139(21):2399-2402. doi: 10.1161/CIRCULATIONAHA.119.040134. PMID: 31107619.

Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011 Oct;91(4):1447-531. doi: 10.1152/physrev.00031.2010. PMID: 22013216.

Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1462. doi: 10.1002/wsbm.1462. Epub 2019 Aug 13. PMID: 31407867; PMCID: PMC6916202.

Kocahan, Tuğba & Balci, Aydin & akınoğlu, Bihter & Sarı, Salih & Hasanoğlu, Adnan. (2018). Assessment of the relation of serum iron and ferritin levels to isokinetic muscle strength in elite athletes without anemia. Medical Journal of Islamic World Academy of Sciences. 26. 17-20. 10.5505/ias.2018.46872.

Qiu L, Frazer DM, Hu M, Song R, Liu X, Qin X, Ma J, Zhou J, Tan Z, Ren F, Collins JF, Wang X. Mechanism and regulation of iron absorption throughout the life cycle. J Adv Res. 2025 Jan 13:S2090-1232(25)00002-5. doi: 10.1016/j.jare.2025.01.002. Epub ahead of print. PMID: 39814221.

Leermakers PA, Remels AHV, Zonneveld MI, Rouschop KMA, Schols AMWJ, Gosker HR. Iron deficiency-induced loss of skeletal muscle mitochondrial proteins and respiratory capacity; the role of mitophagy and secretion of mitochondria-containing vesicles. The FASEB Journal. 2020; 34: 6703–6717. https://doi.org/10.1096/fj.201901815R

Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021 Feb;31(2):107-125. doi: 10.1038/s41422-020-00441-1. Epub 2020 Dec 2. PMID: 33268902; PMCID: PMC8026611.

Chen Z, Chen J, Song C, Sun J, Liu W. Association Between Serum Iron Status and Muscle Mass in Adults: Results From NHANES 2015-2018. Front Nutr. 2022 Jul 11;9:941093. doi: 10.3389/fnut.2022.941093. PMID: 35898717; PMCID: PMC9309789.

Ma A, Chen H, Yin H, Zhang Z, Zhao G, Luo C, Zhuang R, Chen A, Han T. Association of serum iron metabolism with muscle mass and frailty in older adults: A cross-sectional study of community-dwelling older adults. Medicine (Baltimore). 2024 Aug 16;103(33):e39348. doi: 10.1097/MD.0000000000039348. PMID: 39151527; PMCID: PMC11332760.

Alves FM, Ayton S, Bush AI, Lynch GS, Koopman R. Age-Related Changes in Skeletal Muscle Iron Homeostasis. J Gerontol A Biol Sci Med Sci. 2023 Jan 26;78(1):16-24. doi: 10.1093/gerona/glac139. PMID: 35869751.

Solberg A, Reikvam H. Iron Status and Physical Performance in Athletes. Life (Basel). 2023 Oct 2;13(10):2007. doi: 10.3390/life13102007. PMID: 37895389; PMCID: PMC10608302.

Araki, M., Takahashi, Y., Ohyama, Y. et al. Risk factors for frailty in elderly Japanese people who received Ningen Dock: a cross-sectional study. Egypt J Intern Med 34, 42 (2022). https://doi.org/10.1186/s43162-022-00127-7

Beavers CJ, Ambrosy AP, Butler J, Davidson BT, Gale SE, Piña IL, Mastoris I, Reza N, Mentz RJ, Lewis GD. Iron Deficiency in Heart Failure: A Scientific Statement from the Heart Failure Society of America. J Card Fail. 2023 Jul;29(7):1059-1077. doi: 10.1016/j.cardfail.2023.03.025. Epub 2023 May 1. PMID: 37137386.

Tounaoua, Mahamane & Shaibu, Zakari & Guo-yang, Zhao. (2025). Exploring the role of iron accumulation and muscle parameters as potential risk factors for sarcopenia. 10.21203/rs.3.rs-6176003/v1.

Tounaoua, Mahamane & Chen, Honggu & Shaibu, Zakari & Guo-yang, Zhao. (2024). Correlation between iron accumulation and sarcopenia in middle-aged and elderly populations. 10.21203/rs.3.rs-4766660/v1.

İndir

Yayınlanan

24 Kasım 2025

Lisans

Lisans