Sellüler ve Sistemik Demir Hemostazı

Özet

Bu bölüm, demirin hücresel ve sistemik hemostazdaki temel rolünü kapsamlı biçimde ele almaktadır. Demirin biyolojik önemi; DNA sentezi, enerji üretimi ve oksijen taşınması gibi yaşamsal süreçlerdeki işlevleri üzerinden açıklanmaktadır. Demir metabolizmasının dengesi; enterositler, eritroid öncüller, makrofajlar ve hepatositler arasındaki koordinasyonla sağlanmakta olup, aşırı birikim toksisiteye yol açabilmektedir. Bölümde, demirin emilim mekanizmaları, hücre içi depolanma ve taşınma yolları, ferritinofaji gibi özel süreçler, hepsidin aracılı sistemik regülasyon ve patolojik durumlarla ilişkisi detaylandırılmıştır. Bu kapsamlı yaklaşım, hem temel bilim hem de klinik hematoloji açısından demir homeostazının anlaşılmasına katkı sunmaktadır.

Referanslar

Andreini, A. Rosato and L. Banci The relationship between environmental dioxygen and iron–sulfur proteins explored at the genome level, PLoS One, 2017, 12, e0171279

I. Bertini, A. Sigel and H. Sigel Handbook on Metalloproteins, New York, Marcel Dekker, 2001, p. 1800.

Andreini, C., Putignano, V., Rosato, A. & Banci, L. The human iron-proteome. Metallomics 10, 1223–1231 (2018).

S. J. Dixon and B. R. Stockwell The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol., 2014, 10, 9–17.

M. D. Knutson Iron transport proteins: gateways of cellular and systemic iron homeostasis, J. Biol. Chem., 2017, 292, 12735–12743.

Muckenthaler, M.U., Rivella, S., Hentze, M.W., Galy, B., 2017. A red carpet for iron metabolism. Cell 168 (3), 344–361.

K. Gkouvatsos, G. Papanikolaou, K. Pantopoulos Regulation of iron transport and the role of transferrin Biochim. Biophys. Acta Gen. Subj., 1820 (3) (2012), pp. 188-202

D. Galaris, A. Barbouti, K. Pantopoulos Iron homeostasis and oxidative stress: an intimate relationship Biochim. Biophys. Acta Mol. Cell Res., 1866 (12) (2019), p. 118535

S. Gulec, G.J. Anderson, J.F. Collins Mechanistic and regulatory aspects of intestinal iron absorption Am. J. Physiol. Gastrointest. Liver Physiol., 307 (4) (2014), pp. G397-G409

H. Drakesmith, E. Nemeth, T. Ganz Ironing out ferroportin Cell Metabol., 22 (5) (2015), pp. 777-787

G. Vashchenko, R.T. MacGillivray Multi-copper oxidases and human iron metabolism Nutrients, 5 (7) (2013), pp. 2289-2313

J. Wang, K. Pantopoulos Regulation of cellular iron metabolism Biochem. J., 434 (3) (2011), pp. 365-381

Y. Cheng, O. Zak, P. Aisen, S.C. Harrison, T. Walz Structure of the human transferrin receptor-transferrin complex Cell, 116 (4) (2004), pp. 565-576

Bartnikas, T. B. Known and potential roles of transferrin in iron biology. Biometals 25, 677–686 (2012).

Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136, 726–739 (2020).

A.K. Sendamarai, R.S. Ohgami, M.D. Fleming, C.M. Lawrence Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle Proc. Natl. Acad. Sci. U. S. A., 105 (21) (2008), pp. 7410-

A. Hamdi, T.M. Roshan, T.M. Kahawita, A.B. Mason, A.D. Sheftel, P. Ponka Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism Biochim. Biophys. Acta, 1863 (12) (2016), pp. 2859-2867

Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussberger S., Gollan J.L., Hediger M.A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter Nature, 388 (1997), pp. 482-488

Illing A.C., Shawki A., Cunningham C.L., Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1 J. Biol. Chem, 287 (2012), pp. 30485-30496

McKie A.T., Barrow D., Latunde Dada G. O., Rolfs A.,Sager G., Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A., Peters T.J., Raja K.B., Shirali S., Hediger M.A., Farzaneh F., Simpson R.J. An iron-regulated ferric reductase associated with the absorption of dietary iron Science, 291 (2001), pp. 1755-1759

Abboud S., Haile D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism J. Biol. Chem, 275 (2000), pp. 19906-19912

Mitchell C.J., Shawki A., Ganz T., Nemeth E., Mackenzie B. Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc Am. J. Physiol. Cell Physiol, 306 (2014), pp. C450-C459

Ohgami R.S., Campagna D.R., Greer E.L., Antiochos B., McDonald A., Chen J., Sharp J.J., Fujiwara Y., Barker J.E., Fleming M.D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells Nat. Genet, 37 (2005), pp. 1264-1269

Tabuchi M., Yoshimori T., Yamaguchi K., Yoshida T., Kishi F. Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in HEp-2 cells J. Biol. Chem, 275 (2000), pp. 22220-22228

Shaw G.C., Cope J.J., Li L., Corson K., Hersey C., Ackermann G.E., Gwynn B., Lambert A.J., Wingert R.A., Traver D., Trede N.S., Barut B.A., Zhou Y., Minet E., Donovan A., et al. Mitoferrin is essential for erythroid iron assimilation Nature, 440 (2006), pp. 96-100

Paradkar P.N., Zumbrennen K.B., Paw B.H., Ward D.M., Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2 Mol. Cell. Biol, 29 (2009), pp. 1007-1016

Knutson M., Wessling-Resnick M. Iron metabolism in the reticuloendothelial system Crit. Rev. Biochem. Mol. Biol, 38 (2003), pp. 61-88

White C., Yuan X., Schmidt P.J., Bresciani E., Samuel T.K., Campagna D., Hall C., Bishop K., Calicchio M.L., Lapierre A., Ward D.M., Liu P., Fleming M.D., Hamza I. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis Cell Metab, 17 (2013), pp. 261-270

Gottlieb Y., Truman M., Cohen L.A., Leichtmann-Bardoogo Y., Meyron-Holtz E.G. Endoplasmic reticulum anchored heme-oxygenase 1 faces the cytosol Haematologica, 97 (2012), pp. 1489-1493

Garby L., Noyes W.D. Studies on hemoglobin metabolism. II. Pathways of hemoglobin iron metabolism in normal man J. Clin. Invest, 38 (1959), pp. 1484-1486

Kristiansen M., Graversen J.H., Jacobsen C., Sonne O., Hoffman H.J., Law S.K., Moestrup S.K. Identification of the haemoglobin scavenger receptor Nature, 409 (2001), pp. 198-201

Hvidberg V., Maniecki M.B., Jacobsen C., Højrup P., Møller H.J., Moestrup S.K. Identification of the receptor scavenging hemopexin-heme complexes Blood, 106 (2005), pp. 2572-2579

Morgan E.H., Smith G.D., Peters T.J. Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver Biochem. J, 237 (1986), pp. 163-173

LeLan C.,Loréal O., Cohen T., Ropert M., Glickstein H., Lainé F., Pouchard M., Deugnier Y.,Le Treut A., Breuer W., Cabantchik Z.I., Brissot P. Redox active plasma iron in C282Y/C282Y hemochromatosis Blood, 105 (2005), pp. 4527-4531

Nam H., Wang C.Y., Zhang L., Zhang W., Hojyo S., Fukada T., Knutson M.D. ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders Haematologica, 98 (2013), pp. 1049-1057

Randell E.W., Parkes J.G., Olivieri N.F., Templeton D.M. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron J. Biol. Chem, 269 (1994), pp. 16046-16053

Harris Z.L., Durley A.P., Man T.K., Gitlin J.D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux Proc. Natl. Acad. Sci. U.S.A, 96 (1999), pp. 10812-10817

C.C. Philpott, S. Jadhav The ins and outs of iron: escorting iron through the mammalian cytosol Free Radic. Biol. Med., 133 (2019), pp. 112-117

N. Santana-Codina, J.D. Mancias The role of NCOA4-mediated ferritinophagy in health and disease Pharmaceuticals, 11 (4) (2018)

A. Nai, M.R. Lidonnici, G. Federico, M. Pettinato, V. Olivari, F. Carrillo, S. Geninatti Crich, G. Ferrari, C. Camaschella, L. Silvestri, F. Carlomagno NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice Haematologica (2020), 10.3324/haematol.2019.241232

N. Santana-Codina, S. Gableske, M.Q.D. Rey, B. Malachowska, M.P. Jedrychowski, D.E. Biancur, P.J. Schmidt, M.D. Fleming,W. Fendler, J.W. Harper, A.C. Kimmelman, J.D. Mancias NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms Haematologica, 104 (7) (2019), pp. 1342-1354

H. Drakesmith, E. Nemeth, T. Ganz Ironing out ferroportin Cell Metabol., 22 (5) (2015), pp. 777-787

Z. Zhang, F. Zhang, X. Guo, P. An, Y. Tao, F. Wang Ferroportin1 in hepatocytes and macrophages is required for the efficient mobilization of body iron stores in mice Hepatology, 56 (3) (2012), pp. 961-971

D.L. Zhang, M.C. Ghosh, H. Ollivierre, Y. Li, T.A. Rouault Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress Blood, 132 (19) (2018), pp. 2078-2087

J. Wang, K. Pantopoulos Regulation of cellular iron metabolism Biochem. J., 434 (3) (2011), pp. 365-381

T. Ganz Systemic iron homeostasis Physiol. Rev., 93 (4) (2013), pp. 1721-1741

S. Aschemeyer, B. Qiao, D. Stefanova, E.V. Valore, A.C. Sek, T.A. Ruwe, K.R. Vieth, G. Jung, C. Casu, S. Rivella, M. Jormakka, B. Mackenzie, T. Ganz, E. Nemeth Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin Blood, 131 (8) (2018), pp. 899-910

K. Pantopoulos Inherited disorders of iron overload Front Nutrition, 5 (2018), p. 103

C.A. Worthen, C.A. Enns The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body Front. Pharmacol., 5 (2014), p. 34

P.J. Lim, T.L. Duarte, J. Arezes, D. Garcia-Santos, A. Hamdi, et al. Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin Nature Metabolism, 1 (2019), pp. 519-531

C.Y. Wang, Y. Xu, L. Traeger, D.Y. Dogan, X. Xiao, A.U. Steinbicker, J.L. Babitt Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3 Blood, 135 (6) (2020), pp. 453-456

M.U. Muckenthaler, S. Rivella, M.W. Hentze, B. Galy A red carpet for iron metabolism Cell, 168 (3) (2017), pp. 344-361

M. Vujic Spasic, R. Sparla, K. Mleczko-Sanecka, M.C. Migas, K. Breitkopf-Heinlein, S. Dooley, S. Vaulont, R.E. Fleming, M.U. Muckenthaler Smad6 and Smad7 are co-regulated with hepcidin in mouse models of iron overload Biochim. Biophys. Acta, 1832 (1) (2013), pp. 76-84

S. Colucci, A. Pagani, M. Pettinato, I. Artuso, A. Nai, C. Camaschella, L. Silvestri The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes Blood, 130 (19) (2017), pp. 2111-2120

L. Traeger, C.A. Enns, J. Krijt, A.U. Steinbicker The hemochromatosis protein HFE signals predominantly via the BMP type I receptor ALK3 in vivo Commun Biol, 1 (2018), p. 65

X. Xiao, S. Dev, S. Canali, A. Bayer, Y. Xu, A. Agarwal, C.Y. Wang, J.L. Babitt Endothelial Bmp2 knockout exacerbates hemochromatosis in Hfe knockout mice but not Bmp6 knockout mice Hepatology (2019)

İndir

Yayınlanan

24 Kasım 2025

Lisans

Lisans