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BÖLÜM 1

FIZIK TEDAVI MODALITELERINE İLIŞKIN 
BIYOFIZIKSEL TEMEL KAVRAMLAR

Yunus KARAKOÇ 1

1. GIRIŞ

Modern tıbbın en dinamik alanlarından olan Fizyoterapi disiplini ağrı kontrolü, 
fonksiyonel kapasitenin artırılması, kas-iskelet sistemi hastalıklarının tedavisi ve 
doku restorasyonu gibi temel klinik hedeflere ulaşmak için elektro-fiziksel tedavi 
modalitelerinden faydalanmaktadır. Bu tedavi modaliteleri, geleneksel kullanımda büyük 
oranda klinik deneyimlere ve ampirik gözlemlere dayalı uygulanmış olsa da güncel 
bilimsel yaklaşım, modalitelerinin etkin ve güvenli kullanımının ancak altta yatan temel 
biyofiziksel mekanizmaların ayrıntılı şekilde anlaşılmasıyla mümkün olabileceğini açıkça 
ortaya koymaktadır (1).

Tedavi modalitelerinin klinik etkinliğin anlaşılmasında, uygulanan fiziksel 
enerjinin—mekanik, termal veya elektromanyetik nitelikte olsun—biyolojik dokularla 
nasıl etkileşime girdiğinin ve bu etkileşimlere bağlı hücresel ve moleküler çok katmanlı 
biyofiziksel süreçlerin nasıl ortaya çıktığının kapsamlı biçimde açıklanması önemli yer 
tutar (2–4). Bu süreç, yalnızca enerji- doku etkileşimi değil aynı zamanda hücre membranı 
elektriksel özelliklerindeki değişimleri, iyon kanallarının modifikasyonunu, sinyal iletim 
yollarının modülasyonunu, protein konformasyonlarının yeniden düzenlenmesini ve 
hatta gen ekspresyonunun belirli yönlerde etkilenmesini içeren karmaşık bir dizi biyolojik 
reaksiyonu kapsar (5).

Biyofizik disiplini, özetle, fiziksel yasaları ve ilkeleri kullanarak biyolojik sistemlerin 
davranışını açıklamayı amaçlayan disiplinler arası son derece dinamik bir bilim dalıdır. 
Fizyoterapi modaliteleri biyofiziksel perspektifle değerlendirildiğinde; bu modaliteler basit 
birer “ısı veren-alan” ya da “uyarı sağlayan” enstrüman olmaktan çıkıp, çok boyutlu ve 
sofistike biyolojik sinyal modülatörleri olarak yeniden tanımlanır (6). Bu bağlamda elektro-
1	 Prof. Dr., Sağlık Bilimleri Üniversitesi Hamidiye Tıp Fakültesi Biyofizik AD., 

yunus.karakoc@sbu.edu.tr, ORCID iD: 0000-0001-5694-0737
DOI: 10.37609/akya.3998. c3409
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Fizik Tedavi Modalitelerine İlişkin Biyofiziksel Temel Kavramlar

5. SONUÇ

Kitabımızın bu giriş bölümü, ilerleyen bölümlerde ayrıntılı olarak irdelenecek her bir 
modalitenin detaylı biyofiziksel analizine sağlam bir zemin hazırlamaktadır. Genel 
hatlarıyla burada sunulan bilgiler, okuyucunun ilerleyen bölümlerdeki kavramları 
daha bütüncül bir bakış açısıyla yorumlayabilmesine olanak tanımanın yanında, teorik 
kuramlar ve klinik uygulamalar arasındaki bağlantıyı daha da netleştirmesine katkı 
sağlayacaktır. Böylece okur, kitabın ilerleyen bölümlerindeki derinlemesine incelemeleri 
daha anlaşılır, tutarlı ve bilimsel bir bağlam içerisinde takip edebilecektir.

KAYNAKLAR
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kullanımı. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi. 2023;25(1):143–151.

14.	 Dos Santos SA, Serra AJ, Stancker TG, et al. Effects of photobiomodulation therapy on oxidative 
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BÖLÜM 2

TERAPÖTIK ENERJI TEMELLI 
REHABILITASYON MODALITELERININ 
BIYOFIZIĞI

Aycan BAŞ 1

GIRIŞ

Fizik tedavi ve rehabilitasyon uygulamalarının etkinliği, kullanılan modalitelerin 
biyofiziksel etki mekanizmalarının doğru anlaşılmasına ve bu mekanizmaların tedavi 
hedefleriyle uyumlu biçimde uygulanmasına bağlıdır. Termal, mekanik, elektriksel 
ve manyetik enerjiye dayalı yöntemler; doku sıcaklığını değiştirme, iyon akımlarını ve 
membran geçirgenliğini etkileme, mekanik stres oluşturma ve nörofizyolojik yanıtları 
modüle etme gibi farklı terapötik etkiler ortaya koyar. Özellikle terapötik ultrason gibi 
bazı modalitelerde termal ve non-termal etkiler bir arada bulunmakta ve bu bileşenlerin 
klinik ayrımı her zaman net olmayabilmektedir. Bu bağlamda fizik tedavi, biyolojik 
dokulara farklı enerji formlarının kontrollü ve hedefe yönelik olarak aktarılmasına 
dayanan biyofiziksel müdahaleler bütünü olarak tanımlanabilir. Enerji aktarımının klinik 
sonuçları yalnızca uygulanan fiziksel ajana değil, aynı zamanda dokuların elektriksel 
iletkenliği, elastik özellikleri, su ve iyon içeriği gibi biyofiziksel niteliklerine de bağlıdır. 
Fizik tedavide hedeflenen biyolojik yanıtlar ağırlıklı olarak uyarılabilir dokular üzerinden 
gelişir; sinir, eklem ve kas dokuları başta olmak üzere bağ dokusu yapıları da uygulanan 
enerjiye özgü yanıtlar verebilir. Bu nedenle rehabilitasyon modalitelerinin bilimsel 
temeli, hücresel membran potansiyelleri, iyon kanalları, aksiyon potansiyeli oluşumu 
ve mekanotransdüksiyon süreçleriyle yakından ilişkilidir. Bu bölüm, enerji temelli tüm 
rehabilitasyon yaklaşımları için ortak bir biyofiziksel ve kavramsal çerçeve sunmayı 
vamaçlamaktadır.

1	 Dr. Öğr. Üyesi, Afyonkarahisar Sağlık Bilimleri Üniversitesi Tıp Fakültesi Biyofizik AD., 
aycan.bas@afsu.edu.tr, ORCID iD: 0000-0002-9376-8021

DOI: 10.37609/akya.3998. c3410
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SONUÇ

Bu bölümde ele alınan terapötik enerji temelli rehabilitasyon modaliteleri, klinik 
etkinliğin yalnızca kullanılan cihaz ya da yöntemle değil, aktarılan enerjinin türü, dozu, 
süresi ve dokuya özgü özelliklerle kurduğu etkileşimle belirlendiğini açık biçimde ortaya 
koymaktadır. Elektriksel, elektromanyetik, mekanik, termal ve ışık temelli modaliteler, 
farklı fiziksel ilkeler üzerinden etki gösterse de, tümünde ortak hedef kontrollü enerji 
aktarımı yoluyla güvenli ve öngörülebilir biyolojik yanıt elde edilmesidir. İnsan dokularının 
heterojen yapısı ve bireyler arası değişkenlik, standart doz yaklaşımlarının sınırlı kalmasına 
neden olmakta ve klinik uygulamada parametrelerin hasta ve doku özelliklerine göre 
uyarlanmasını zorunlu kılmaktadır. Bu bağlamda, modern rehabilitasyon pratiği yalnızca 
cihaz kullanımına değil, doz–zaman–etki ilişkilerinin rasyonel biçimde yönetilmesine 
ve uygulamaların güvenlik sınırları içinde sürdürülmesine dayanmalıdır. Enerji temelli 
modalitelerin bilimsel ilkeler doğrultusunda kullanılması, hem terapötik etkinliğin 
artırılmasını hem de yan etki risklerinin en aza indirilmesini sağlayarak rehabilitasyonun 
kanıta dayalı ve öngörülebilir bir klinik disiplin olarak güçlenmesine katkı sunmaktadır.

KAYNAKLAR
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BÖLÜM 3

DOĞRU AKIM (GALVANIK) VE İYONTOFOREZ

Bahar ÖZTÜRK KURT 1

GIRIŞ

Elektrik akımı, elektrik yüklerinin bir iletken boyunca yönlü hareketidir ve bir iletkenden 
birim zamanda geçen elektrik yükü miktarı olarak tanımlanır. Uluslararası birimler 
sistemine (SI) göre birimi Amper (A) olup ‘I’ sembolü ile gösterilir. Akım şiddetinin 
ölçülmesi için devreye seri olarak bağlanan ampermetre kullanılır. Akım şiddeti, devredeki 
gerilim ve direnç arasındaki ilişkiyi tanımlayan Ohm Yasası (I=V/R) ile açıklanır. Bu 
yasa bir iletkenden geçen elektrik akımının (I), uygulanan gerilimle (V) doğru, devre 
direnciyle (R) ters orantılı olduğunu belirtir. Devre elemanlarının direnci arttıkça, aynı 
gerilim altında akımın azalması beklenir (1-3). Bu ilişki, cilt direnci yüksek olan bireylerde 
başlangıç akımının daha düşük hissedilmesini açıklayan önemli bir biyofiziksel prensiptir. 
Bu yasa, doku direnci, deri empedansı ve uygulanan gerilim arasındaki etkileşimin 
anlaşılmasında klinik pratikte önemli bir yere sahiptir (4). Geleneksel yaklaşımda akımın 
yönü, pozitif yüklerin hareket yönü olarak kabul edilir; ancak fizikte elektronlar negatif 
yük taşıdıkları için gerçek yük hareketi bu yönün tersinedir (1-3).

Elektrik akımı genel olarak doğru akım (galvanik, DC) ve alternatif akım (AC) olmak 
üzere iki temel sınıfta incelenir: Doğru akımda elektrik yükleri tek yönde sürekli hareket 
ederken, alternatif akımda yüklerin hareket yönü zamanla periyodik olarak değişir 
(1). Klinik elektroterapi uygulamalarında bu iki akım türü, biyolojik dokular üzerinde 
oluşturdukları elektriksel, kimyasal ve fizyolojik etkiler açısından farklı terapötik sonuçlar 
ortaya çıkarır (5). Elektrik akımını ileten yük taşıyıcılarının türü, içinde bulundukları 
ortama bağlı olarak değişir; katı iletkenlerde akımın taşınmasından serbest elektronlar 
sorumlu iken, sıvı ve gaz ortamlarda iletimi pozitif ve negatif iyonlar gerçekleştirir 
(1,2). Bu durum, fizik tedavi uygulamalarında doğru akımın hedeflediği doku içi iyon 
hareketliliğinin biyolojik temelini oluşturur. Elektrik akımı, uygulandığı sistemde çeşitli 
enerji dönüşümlerine yol açar. Akımın dirençli dokulardan geçişi ısı artışına; filamentli 
1	 Arş. Gör. Dr., İstanbul Üniversitesi-Cerrahpaşa, Cerrahpaşa Tıp Fakültesi, Biyofizik AD.,  
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kullanıldığında fizyoterapi pratiğinde klinik sonuçları olumlu yönde etkileyebilen önemli 
modalitelerdir. Ancak yöntemin klinik yerinin daha kesin biçimde tanımlanabilmesi, 
gelecekte yapılacak daha kapsamlı ve metodolojik açıdan güçlü araştırmalarla mümkün 
hâle gelecektir.
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BÖLÜM 4

ALTERNATIF AKIMLAR  
(FARADIK, SINÜZOIDAL, DIADINAMIK)

Denizhan KARIŞ 1

GIRIŞ

Hücrelere ve dokulara gelen bir sinyalin eşik değeri geçmesi durumunda, aksiyon 
potansiyeli oluşacak ve gelen sinyal depolarizasyon ile ilgili hücre ve dokuda bir cevap 
oluşturacaktır. Gelen sinyalin hücre ve dokuda oluşturduğu cevap, repolarizasyon 
fazını takiben sükun durumuna tekrar döner. Hücre ve dokularda cevap oluşturabilen 
sinyaller; kimyasal, fiziko-kimyasal, hormonal, mekanik, termal, ışık, ses, radyasyon ve 
elektrik kaynaklı olabilmektedir. Bu sinyallerden şiddeti ve süresi en kolay ayarlanabilir, 
kontrol edilebilir, kolayca uygulanabilir ve tekrarlanabilir, ve en elverişli ve olanı elektrik 
akımlarıdır.

İki farklı nokta arasındaki elektron sayısının dengesizliğine bağlı olarak oluşan 
kuvvettir. Elektronların bu farkı eşitlemeye yönelik olarak hareket etmesiyle elektrik akımı 
oluşur. Elektrik akımı, elektronların iletkenler üzerinde negatif kutuptan pozitif kutupa 
doğru hareketiyle oluşur. Elektron konsantrasyonu katotta yüksek, anotta ise düşüktür. 
Elektrik akımının yönü, elektron akış yönünün tersi olarak tanımlanır. Akım şiddeti (I), 
iletken ortamın herhangi bir kesitinden birim zamanda geçen yük miktarına amper (A) 
olarak tanımlanır. Voltaj (V) ise, iki nokta arasında bir yükün enerjisinde meydana gelen 
değişikliğin matematiksel bir ifadesidir. Elektronların kolaylıkla hareket ettiği iletkenler 
maddelerde, farklı derecelerde görülen ve elektron geçişine karşı oluşan kuvvetlere, direnç 
denir. Elektrik akımlarında direncin birimi ohm (Ω) ile ölçülür. Voltaj, akım ve direnç 
arasındaki ilişkinin matematiksel ifadesi Ohm Yasası ile ifade edilmektedir. Maddenin 
direnci yüksekse, o bölgeden daha az akım geçerek etki yapmaktadır. Elektrik akımı, 
direncin daha az olduğu yere doğrudur (1,2,3).
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özellikle ultrason ve terapötik egzersizler gibi diğer yöntemlerle birlikte kullanıldığında, 
kapsamlı ağrı yönetimi ve rehabilitasyon için değerli bir yöntem haline getirir. Diadinamik 
terapi, çok çeşitli akut ve kronik ağrı durumlarının tedavisinde güçlü bir seçenek olmaya 
devam etmektedir.

Elektroterapi, antik çağlardaki gözlemlerden başlayarak bilimsel keşifler ve teknolojik 
gelişmeler yoluyla modern tıbbın önemli ve etkili tedavi yöntemlerinden biri haline 
gelmiştir. Alçak elektrik akımlarla uygulanan elektroterapi; ağrıyı yönetmek, kas 
fonksiyonlarını korumak, rehabilitasyon sürecini hızlandırmak ve yaşam kalitesini 
iyileştirmek için klinikte önemli bir rol oynar. Doğru hasta, uygun yöntem ve uygun 
tedavi seçenekleri kullanıldığında uygun bir tedavi seçeneğidir.

Günümüzde bilgisayar kontrollü cihazların da yaygınlaşmasıyla, elektroterapi 
uygulama yöntemleri daha güvenli ve kişiye özel terapi seçenekleri için elverişli hale 
gelmiş durumdadır.
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BÖLÜM 5

TRANSKUTANÖZ ELEKTRIKSEL SINIR 
STIMÜLASYONU (TENS)

Cemalettin DEMİR 1

1. GIRIŞ

Transkutanöz elektriksel sinir stimülasyonu (TENS) akut ve kronik ağrının tedavisinde 
kullanılan ve farmakolojik olmayan noninvaziv bir müdahale yöntemidir. TENS ünitesi ile 
oluşturulan belirli parametrelerdeki (frekans, yoğunluk vs.) alternatif akım, ağrılı bölgeye 
cilt üzerine yerleştirilen elektrotlar aracılığıyla uygulanır. Birçok ülkede reçetesiz olarak 
temin edilebilen TENS aygıtları ucuz, ayarlanabilir, kolay uygulanabilir olma ve kendi 
kendine uygulanabilme gibi avantajlara sahiptir (Şekil 1) (1,2). Hafif ve orta şiddetli ağrıda 
tek başına tedavi olarak kullanılırken orta ve şiddetli ağrı durumlarında ilaç tedavisine ek 
olarak kullanılmaktadır. Klinik deneyimler ve çalışmalar TENS’in çeşitli ağrılı durumlarda 
etkili olduğunu gösterdiği gibi birçok hasta TENS tedavisinden memnun kaldığını ifade 
etmektedir. Öte yandan TENS ile ilgili sistematik incelemelerin kesin sonuç vermemesi 
ve henüz yeteri kadar kanıt sağlayacak klinik çalışmanın olmaması ağrıyı hafifletmedeki 
klinik etkinliğinde belirsizliğe neden olmaktadır (1,3). TENS’in analjezik etkisini açıklayan 
çeşitli mekanizmalar öne sürülmüştür ancak bu konuda daha fazla çalışmaya ihtiyaç vardır.

Şekil 1. Portatif TENS cihazı ve elektrotları

1	 Öğr. Gör. Dr., Recep Tayyip Erdoğan Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Tıbbi Hizmetler ve 
Teknikler Bölümü, cemalettin.demir@erdogan.edu.tr, ORCID iD: 0000-0001-8140-9892

DOI: 10.37609/akya.3998. c3413
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BÖLÜM 6

NÖROMÜSKÜLER VE FONKSIYONEL 
ELEKTRIKSEL STIMÜLASYON

Aziz KARACA 1

GIRIŞ

Elektrik akımının kas dokusunda kasılma meydana getirdiği olgusu ilk olarak 1790 
yılında Luigi Galvani tarafından ortaya konulmasından beri, elektriksel stimülasyonun 
uzun yıllar bilimsel ilgi odağı olmasına zemin hazırlamış ve zaman içerisinde farklı akım 
tiplerinin çeşitli klinik durumların tedavisinde kullanılmasına öncülük etmiştir (1). 
Bu bağlamda, özellikle son yıllarda geliştirilen Nöromüsküler Elektriksel Stimülasyon 
(NMES) ve Fonksiyonel Elektriksel Stimülasyon (FES), modern rehabilitasyon tıbbının 
vazgeçilmez araçları haline gelmiştir (Şekil 1).

Bu uygulamalar uyarılabilir dokuların (sinir ve kas) membran potansiyellerini 
değiştirerek aksiyon potansiyeli oluşturma prensibine dayanır. Kökleri 20. yüzyılın 
başlarına uzansa da modern fizyolojideki karşılıkları 1960’larda şekillenmeye başlamıştır 
(2). Özellikle 1977’de peroneal sinir stimülasyonu ile motor ünite rekrütmanının 
artırılabileceğinin gösterilmesi alanda dönüm noktası olmuştur (3). Bu tarihten itibaren, 
dışsal elektrik akımlarının biyofiziksel uyarıları taklit etme yeteneği hem mühendislik hem 
de klinik bilimler açısından detaylandırılmıştır. Güncel araştırmalar bu uygulamaların 
sadece periferik kas üzerinde değil, afferent geri bildirim yoluyla merkezi sinir sisteminde 
kortikal plastisiteyi de modüle ettiğini ortaya koymaktadır (4).

1	 Dr. Öğr. Üyesi, Recep Tayyip Erdoğan Üniversitesi, Tıp Fakültesi, Fizyoloji AD., drazizkaraca@gmail.com, 
ORCID iD: 0000-0001-9408-5073

DOI: 10.37609/akya.3998. c3414
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BÖLÜM 7

MAGNETOTERAPININ BIYOFIZIKSEL 
ESASLARI VE KULLANIM ALANLARI

Selma YAMAN 1

1. GIRIŞ

Ağrı, organik bir kökenden kaynak alan ya da travma, bası, darp gibi dış etmenlerle 
gelişen, kişinin deneyimleri ve duygu durumu ile yakından ilişkili sensoryal, emosyonel, 
hoş olmayan bir durum olarak tanımlanır (1,2). Nosisepsiyonun farklı basamaklarında bir 
takım metabolik olaylar ile birlikte ortaya çıkan allodini, hiperaljezi vb. duyu yoksunluğu ya 
da aşırı duyu hissi gibi fiziksel semptomları olan ağrının tedavi edilmesi için farmakolojik, 
termal, elektrik uyarıları vb. bir takım tekniklere başvurulmuş olup bunlardan bir tanesi 
de manyetik alan ile ilişkilendirilen Magnetoterapidir (3,4).

2. MAGNETOTERAPI VE BIYOFIZIKSEL TEMELLERI

“Manyetizim” kelimesinin; yer altı zenginliklerinden biri olan magnetitin varlığı ile 
karşılaşıldığı yerleşimin ismi olan Magnesia (Manisa)’ dan türetildiği öngörülmektedir. 
Mıknatıslar; kuzey (N) ve güney (S) olmak üzere iki kutbu bulunan ve bu iki kutup 
arasında manyetik alan çizgilerinin giriş ve çıkışları olduğu bilinen doğal ya da sentetik 
yapılardır (Şekil 1) (5).

Manyetik alan ile elektrik alan fiziksel zeminde birbirleri ile yakından ilişkilidir. 
Standart koşullarda; iletken bir malzemede, ortamın direncini (R) yenen hareketli yükler, 
elektrik akımını (I) meydana getirir ve hareketli elektrik yüklerinin de bir elektrik alan 
(EA) oluşturduğu bilinmektedir (6). Bu temel bilgi ışığında I varlığında bir de manyetik 
alanın (MA) var olduğundan bahsetmek doğru olacaktır. İletken bir telde hareket eden 
yükler dolayısıyla meydana gelen I, etrafında bir de MA oluşturur. Manyetik alan şiddeti 
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BÖLÜM 8

FONKSIYONEL ELEKTRIK STIMÜLASYONU 
VE BIOFEEDBACK SISTEMLERININ 
BIYOFIZIKSEL TEMELLERI

Fulya YÜKÇÜ 1

GIRIŞ

Fonksiyonel elektrik stimülasyonu (FES), periferik sinir ve kas dokusunun düşük düzey 
elektrik akımlarıyla kontrollü biçimde aktive edilmesine dayanan ve özellikle nörolojik 
hasar sonrası kaybedilen fonksiyonların yeniden kazandırılmasında kullanılan temel 
bir nörorehabilitasyon yöntemidir (1). İlk klinik uygulamalar düşük ayak gibi spesifik 
fonksiyon kayıplarının telafisi üzerine geliştirilmiştir. Günümüzde ise modern FES 
sistemleri; omurilik yaralanması, inme ve diğer üst motor nöron lezyonlarında yürüme, 
kavrama, postür ve alt ekstremite fonksiyonlarının yeniden kazandırılmasına yönelik geniş 
bir kullanım alanına sahiptir (1,2). FES’in rehabilitasyondaki bu rolü, elektriksel uyarının 
sinir-kas membranı üzerinde oluşturduğu aksiyon potansiyeli, motor ünite aktivasyonu, 
tetanik kasılma ve fonksiyonel hareket üretimi gibi temel biyofiziksel mekanizmalara 
dayanmaktadır. Bu nedenle yöntem, hem klinik uygulamalardaki fonksiyonel 
kazanımlar hem de sinir-kas sisteminin elektriksel uyarılabilirliğine ilişkin biyofiziksel 
mekanizmaların anlaşılması açısından nörorehabilitasyonun temel bileşenlerinden biri 
olarak kabul edilmektedir (3).

FES’i tamamlayan bir diğer modern nörorehabilitasyon yaklaşımı ise biofeedback 
sistemleridir. Biofeedback, kas aktivitesi, eklem hareketi, postür ya da fizyolojik yanıtların 
sensörler aracılığıyla kaydedilip kullanıcıya gerçek zamanlı geri bildirim olarak sunulması 
temeline dayanır (4). Bu anlık geri bildirim, bireyin hareketi sırasında ortaya çıkan kas 
aktivitesi veya postüral sapmaları anında algılamasını sağlayarak hatalı motor paternleri 
düzeltmesine olanak tanır. Bu süreç, sensörimotor döngülerin etkin biçimde yeniden 
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Yapay zekâ destekli algoritmalar ile taşınabilir EEG teknolojilerindeki gelişmeler, FES–
biofeedback uygulamalarının daha kişiye özel ve gerçek zamanlı olarak uyarlanmasını 
mümkün kılacaktır. Bu teknolojik ilerlemeler, FES ve biofeedback entegrasyonunun 
gelecekte nörorehabilitasyon süreçlerinde daha merkezi bir konuma ulaşacağını 
göstermektedir.
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BÖLÜM 9

NÖROMODÜLASYON VE İLERI ELEKTRIKSEL 
STIMÜLASYON TEKNIKLERI

Aişe Rumeysa MAZI 1

GIRIŞ

Nöromodülasyon; sinir sisteminin elektrik, elektromanyetik veya kimyasal uyaranlarla, 
bölgesel olarak, geçici ya da kalıcı olarak düzenlenmesi, modüle edilmesi anlamına gelir 
(1). Nöromodülasyon uygulamaları sinir hücrelerinin çalışma biçimini, iletim yollarını ve 
ağ organizasyonunu etkileyerek fonksiyonel iyileşmeyi destekler.

Modern nöromodülasyon yöntemleri, klasik elektroterapi uygulamalarından (TENS, 
NMES gibi) farklı olarak yalnızca periferik kas ve sinirleri değil, beyin ve omurilik 
düzeyindeki devreleri de hedef alır (2). Böylece motor kontrol, denge, postür, yürüme, 
ağrı ve otonomik fonksiyonlar üzerinde hem periferik hem santral düzeyde etkiler 
oluşturur. Özellikle inme, spinal kord yaralanmaları, periferik sinir lezyonları ve kronik 
ağrı gibi kompleks klinik tabloların rehabilitasyonunda, nöromodülasyon uygulamaları 
klasik egzersiz temelli yaklaşımları güçlendiren tamamlayıcı bir araç olarak klinik karar 
verme sürecine girmiştir (3,4). Bu nedenle fizyoterapistlerin yalnızca bu tekniklerin nasıl 
uygulandığını değil; aynı zamanda altında yatan mekanizmaları, fizyolojik etkileri ve 
nöral devre düzeyindeki sonuçlarını anlamaları önemlidir.

Tarihsel olarak bakıldığında nöromodülasyonun kökleri antik dönemlerde elektrikli 
balıklarla yapılan ağrı tedavilerine kadar uzansa da modern çağ 1960’larda Derin Beyin 
Stimülasyonu (DBS) ve Spinal Kord Stimülasyonu (SCS) gibi tekniklerin geliştirilmesiyle 
başlamıştır (5). 1990’ların sonunda transkraniyal manyetik stimülasyonun (TMS) 
klinik kullanıma girmesi ve 2000’ler itibarıyla transkraniyal doğru akım stimülasyonu 
(tDCS), alternatif akım stimülasyonu (tACS) ve rastgele gürültü stimülasyonu (tRNS) 
gibi girişimsel olmayan yöntemlerin yaygınlaşmasıyla nöromodülasyon fizyoterapi ve 
rehabilitasyon alanında da merkezi bir yer edinmiştir.
1	 Dr., Sağlık Bilimleri Üniversitesi, Hamidiye Tıp Fakültesi, Biyofizik AD., aiserumeysa.mazi@sbu.edu.tr, 
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temellendirilmiş ve klinik olarak güçlü bir araçtır. Bu alanın bilimsel temellerinin anlaşılması 
ve klinik pratikle entegrasyonu, rehabilitasyonun etkinliğini ve bireyselleştirilmiş tedavi 
anlayışını derinlemesine güçlendirecektir.
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BÖLÜM 10

LAZER VE IŞIK TERAPILERIN BIYOFIZIKSEL 
MEKANIZMALARI

Simge ÜNAY 1

1. GIRIŞ

Işık temelli tedaviler, modern fizik tedavi ve rehabilitasyon uygulamalarının önemli bir 
parçasını oluşturmaktadır. Elektromanyetik spektrumun farklı bölgeleri—ultraviyole 
(UV), görünür ışık, yakın kızılötesi (NIR) ve uzak kızılötesi (FIR)—biyolojik dokular 
üzerinde özgün etkiler oluşturur. Enerji düzeyi, dalga boyu, penetrasyon derinliği 
ve hedef kromoforların farklılığı, her ışık modalitesinin terapötik profilini belirleyen 
temel unsurlardır. UV, görünür ve IR bölgeleri iyonlaştırıcı olmayan radyasyon 
sınıfındadır ve bu nedenle kontrollü kullanıldıklarında güvenli bir biyolojik etkileşim 
sunarlar. UV ışık epidemis düzeyinde sınırlı penetrasyon gösterir ve özellikle immün 
modülasyon, inflamasyonun düzenlenmesi ve belirli dermatolojik hastalıkların tedavisi 
için kullanılır. Fotokimyasının temelinde DNA, protein ve membran bileşenlerinin ışık 
tarafından uyarılması yer alır. Görünür ışık, dokuya orta dereceli penetrasyon sağlayarak 
fotobiyomodülasyon amacıyla kullanılabilir. Dalga boyuna bağlı olarak sitokrom c 
oksidaz gibi mitokondriyal kromoforları uyarır, oksidatif dengeyi düzenler ve hücresel 
iyileşmeyi destekler. Kırmızı ve yeşil spektrum özellikle doku onarımı, ağrı kontrolü ve 
mikrosirkülasyon modülasyonu için araştırılmaktadır. Yakın kızılötesi (NIR), daha derin 
dokulara ulaşabilme kapasitesiyle fizik tedavi uygulamalarında en yoğun kullanılan 
bölümdür. NIR fotonları, dokulardaki su ve proteinlerin absorbans özelliklerine bağlı 
olarak hem termal hem de non-termal biyolojik etkiler oluşturabilir. Düşük seviyeli lazer 
tedavisi ve LED temelli fotobiyomodülasyon, NIR spektrumunun klinik kullanımlarına 
örnek teşkil eder. Uzak kızılötesi (FIR) ise enerji transferini daha çok termal yollarla 
gerçekleştirir ve doku sıcaklığını kontrollü şekilde artırarak vazodilatasyon, kas gevşemesi 
ve metabolik aktivitede artış gibi etkiler yaratır. Saunalardan FIR emiterlerine kadar birçok 
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termal rezonans özellikleri ve ultraviyole ışığının fotokimyasal immünomodülatuvar 
etkileri bu biyofiziksel temelin farklı klinik yansımalarını oluşturmaktadır.

Farklı ışık türlerinin dokuya ulaşma kapasitesi; saçılma, absorbsiyon, yansıma ve iletim 
gibi temel optik süreçlere bağlı olarak değişmekte ve tedavinin hedeflendiği biyolojik 
yapıyı belirlemektedir. Bu nedenle dalga boyu seçimi, doz ayarlaması, uygulama süresi 
ve tedavi sıklığı gibi parametrelerin bilimsel temellere dayandırılması, klinik etkinliğin 
artırılması açısından kritik öneme sahiptir.

Güncel literatürde, ışık temelli tedavilerin kas-iskelet sistemi rahatsızlıklarından kronik 
yaralara, nöropatik ağrıdan dermatolojik hastalıklara kadar geniş bir alanda güvenli, non-
invaziv ve tamamlayıcı bir yaklaşım sunduğu ortaya konmaktadır. Bu tedaviler, hücresel 
iyileşmenin hızlanması, inflamasyonun düzenlenmesi, mikrosirkülasyonun artırılması 
ve immün yanıtın modülasyonu gibi çok katmanlı biyolojik süreçlere etki ederek 
rehabilitasyon pratiğinde giderek daha önemli bir yer edinmektedir.

Sonuç olarak, ışık temelli terapiler modern fizik tedavi ve rehabilitasyonun bilimsel 
açıdan güçlü bir bileşeni haline gelmiştir. Biyofiziksel mekanizmaların daha derin 
anlaşılması, dalga boyu-temelli hedefe yönelik tedavi stratejilerinin geliştirilmesi ve 
ileri teknolojilerle desteklenen fotonik uygulamaların yaygınlaşması, gelecekte bu 
modalitelerin klinik değerini daha da artıracaktır.
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ULTRASON VE FONOFOREZ 
MODALITELERININ BIYOFIZIKSEL 
TEMELLERI

Hamit YILMAZ 1

1. GIRIŞ

Son dekatlarda hızı bir ivme yakalayan fizyoterapi disiplini, yüz yılı aşkın süredir, insan 
vücudunda biyolojik süreçlerin restore edilmesi ve fonksiyonel kapasitenin geliştirilmesi 
amacıyla çeşitli biyofiziksel yöntemleri kullanarak geliştirilen modalitelerden faydalanan 
köklü bir alandır.

Bu tedavi yöntemleri arasında etkinliğini yüksek frekanslı ses dalgalarından alan 
terapötik ultrasonun (TU), biyolojik dokularla etkileşiminde gözlenen termal ve non-
termal(mekanik) fiziksel etkilerinden dolayı yaygın olarak kabul görmektedir. Her ne 
kadar ultrasonun diagnostik amaçla kullanılmaya başlanması, tanısal görüntüleme 
(ultrasonografi) alanında devrim niteliğinde olsa da, 1940’lardan itibaren tedavi edici 
potansiyeli giderek daha fazla dikkat çekmeye başlamıştır (1).

Bu modalitenin etkinliği, ses dalgalarının biyolojik dokularla etkileşimi esnasında 
ortaya çıkan penetrasyon, absobsiyon, yansıma, kırılma, yayılma gibi özgün biyofiziksel 
etkilesimlere dayanmaktadır (2). Fizyoterapi uygulamalarında derin ısıtıcı bir modalite 
olarak tanımlanan TU, yüzeyden birkaç santimetre derinliğe kadar penetre olarak doku 
metabolizmasını, kan akışını ve hücresel geçirgenliği etkilemektedir (3). Bu etkileşim 
sonucunda, iyileşme sürecinin hızlanması, ağrının modülasyonu ve kolajen içeren 
dokuların (tendonlar, ligamentler, eklem kapsülü ve fasya vb.) esnekliğinin arttırılarak 
eklem hareket açıklığının fizyolojik sınırlar düzeyine çekilmesi amaçlanmaktadır.

TU’nun farklı bir varyasyonu olarak geliştirilen ve son dekatlarda klinik etkinliği 
üzerine yapılan çalışmalarla popülaritesi artan Fonoforez(phonophoresis) ise, ultrason 
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3. LIPUS Uygulamalarının Genişletilmesi

Düşük yoğunluklu kesikli ultrasonun (LIPUS), kemik iyileşmesi dışında, tendon 
ve ligament gibi yapısal hasarların rejeneratif tedavilerinde biyolojik aktivatör olarak 
kullanımının daha fazla kanıtla desteklenmesi.

Sonuç olarak, terapötik ultrason ve fonoforez, modern fizik tedavi modalitelerinin 
ayrılmaz bir parçasıdır. Ancak başarılı bir tedavi için klinik uygulayıcıların, empirik 
uygulamadan uzaklaşarak, bu etkili modalitenin altında yatan biyofiziksel prensipleri ve 
ilgili bilimsel literatürü derinlemesine anlamaları son derece önelidir.
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YÜKSEK FREKANSLI AKIMLAR

Mehmet ASLAN 1 
Yalçın KARABULUT 2

GIRIŞ

Yüksek frekanslı akımlar (high frequency currents), osilasyon (titreşim) hızı saniyede 1 
milyon veya daha fazla olan alternatif akımlardır (1). Yüksek frekanslı elektromanyetik 
akımların terapötik amaçla kullanılabileceği fikri ilk kez 1800’lü yıllarda Fransız doktor 
D’Arsonval tarafından ortaya atılmıştır (2). Nagelschmidt’in kullandığı, “ısıtma” anlamına 
gelen yunanca kökenli bir kelime olan diatermi terimi ise hedef vücut dokularında ısı 
oluşturmak için yüksek frekanslı elektromanyetik enerji akımlarının uygulanmasıdır 
(Tablo 1). Düşük ve orta frekanslı akımların aksine, yüksek frekanslı akımlar sinir ve kas 
membranında depolarizasyona neden olmadığı için onların uyarıcı değil ısıtıcı amaçla 
kullanılmasına imkân sağlamaktadır (1, 3). Doku biyofiziğini yoğun biçimde etkileyen 
hücresel ve moleküler seviyede regülasyon sağlayabilen bu akımların oluşturduğu enerji, 
joule ısı prensibi perspektifinde dokuda rezistans ile enerjiye dönüşür ve frekansın 
yüksekliğine bağlı olarak iyonlar hızlı yön değiştiremediğinden ısıl değişikliklere yol 
açtığı için elektro kimyasal yanık oluşturmazlar (1,2). Bu durum vasküler genişleme, doku 
metabolizmasında artış oksijenlenme ve bağ dokusu elastisitesinde iyileşme gibi terapötik 
sonuçlar sağlar (1, 2, 3).

Tablo 1. Yüksek Frekanslı Akımlar

Dalga boyu Frekans
1. Uzun dalga diatermi (U.D.D.) 300 m 1 Mhz
2. Kısa dalga diatermi (K.D.D.) 30-3 m 10-100 Mhz
3. Mikrodalga diatermi (Radar) 1 m – 10 cm 300 Mhz

1	 Uzm. Fzt., Hasan Kalyoncu Üniversitesi, Sağlık Bilimleri Fakültesi, Fizyoterapi ve Rehabilitasyon AD., 
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fasya ve yüzeyel kas gruplarında etkilidir. Kesikli kısa dalga diatermi ise enerji iletiminin 
döngüsel biçimde yapılması nedeniyle belirgin termal etki oluşturmadan akut ve subakut 
inflamasyon, ödem kontrolü ve biyostimülasyon gerektiren durumlarda avantaj sağlar 
(17).

Tüm modalitelerde fizyolojik etkiler; metabolik aktivitenin hızlanması, kan akımının 
artması, ağrı iletim yollarının modülasyonu, kas tonusunun düzenlenmesi ve bağ 
dokusu elastikiyetinin iyileşmesi gibi mekanizmalar üzerinden ortaya çıkar. Bununla 
birlikte, uygulama sırasında kontrendikasyonlar dikkatle değerlendirilmedir. Enfeksiyon, 
malignite, gebelik, aktif kanama, duyu bozukluğu, kardiyovasküler instabilite ve metal 
implant varlığı gibi durumlar uygun olmayan uygulama alanlarını oluşturur.

Genel olarak değerlendirildiğinde diatermi modaliteleri, doğru frekans, doz, süre ve 
elektrot yerleşimi ile kullanıldığında güvenli, etkili ve rehabilitasyon sürecini destekleyici 
bir tedavi aracıdır. Klinik hedefler, dokunun derinliği ve patolojinin evresi göz önünde 
bulundurularak uygun modalite seçildiğinde hem termal hem de nontermal etkilerden 
optimum düzeyde yararlanmak mümkün olur. Böylece hastaların ağrı düzeyleri azalmakta 
hareket açıklığı gelişmekte ve fonksiyonel iyileşme süreçleri hızlanmaktadır.
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TRAKSIYONUN BIYOMEKANIK PRENSIPLERI
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GIRIŞ

Traksiyon, Latince tractico (“çekme”) kökünden türetilmiş bir terimdir ve çekme ya 
da germe uygulamasını ifade eder (1). Klinikte traksiyon, yumuşak dokuları germek, 
eklem aralıklarını genişletmek veya kırık kemik fragmanlarını birbirinden ayırmak 
amacıyla vücudun belirli bir bölümüne uygulanan çekme tekniğidir. Omurga kaynaklı 
rahatsızlıkların yönetiminde traksiyonun kullanımı, yaklaşık 4000 yıl öncesine 
dayanmaktadır (2). Özellikle 19. yüzyıl itibarıyla sırt ve omurga problemlerinin tedavisinde 
traksiyon yatakları, korseleri ve sandalyeleri gibi çeşitli cihazların geliştirilmesiyle birlikte 
bu yöntemin klinik uygulamaları belirgin biçimde artmıştır (3). 20. yüzyılın başlarında 
kronik bel ağrısı olan bireylerde yaygın olarak kullanılan bir tedavi yaklaşımı haline gelen 
traksiyon, teknolojik ilerlemeler ve cihaz tasarımlarındaki gelişmelerle birlikte ön plana 
çıkmıştır (3,4). Özellikle son 50 yılda klinikte daha da yaygın biçimde uygulanmaktadır 
(5,6).

Literatürde traksiyon, omurgaya aksiyel distraktif bir kuvvetin uygulanması olarak 
tanımlanmakta ve ağrıya bağlı hareket kısıtlılıklarının yönetiminde harekete dayalı 
terapötik bir yöntem olarak kullanılmaktadır (7,8).

Traksiyon, birçok ülkede bel ağrısı olan hastalarda yaygın biçimde kabul gören bir 
tedavi yöntemidir. Günümüzde fizyoterapistler tarafından ek bir tedavi modalitesi 
olarak sıklıkla uygulanmaktadır (9,10). Traksiyon tedavisi; masaj, egzersiz, elektroterapi 
ve sıcak uygulamalar gibi diğer yöntemlerle kombine edilerek hastaya özgü bir biçimde 
planlanabilmektedir (11). Temel hedefi; ağırlıklar, makaralar veya vücut ağırlığı 
yardımıyla omurgaya çekme kuvveti uygulayarak intervertebral basıncı azaltmak ve ağrıyı 
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