

Obstetrics and Gynecology VI

Editor

Süleyman Cansun DEMİR

© Copyright 2025

Printing, broadcasting and sales rights of this book are reserved to Academician Bookstore House Inc. All or parts of this book may not be reproduced, printed or distributed by any means mechanical, electronic, photocopying, magnetic paper and/or other methods without prior written permission of the publisher. Tables, figures and graphics cannot be used for commercial purposes without permission. This book is sold with banderol of Republic of Türkiye Ministry of Culture.

ISBN	Page and Cover Design
978-625-375-865-3	Typesetting and Cover Design by Akademisyen
Book Title	Publisher Certificate Number
Obstetrics and Gynecology VI	47518
Editor	Printing and Binding
Süleyman Cansun DEMİR	Vadi Printingpress
ORCID iD: 0000-0001-8331-9559	
Publishing Coordinator	Bisac Code
Yasin DİLMEN	MED033000
	DOI
	10.37609/akya.3981

Library ID Card

Obstetrics and Gynecology VI / ed. Süleyman Cansun Demir.

Ankara : Akademisyen Yayınevi Kitabevi, 2025.

124 p. : table. ; 160x235 mm.

Includes References.

ISBN 9786253758653

WARNING

The information contained in this product is only presented as a source for licensed medical workers. It should not be used for any professional medical advice or medical diagnosis. It does not constitute a doctor-patient, therapist-patient and / or any other health-presentation service relationship between the Bookstore and the recipient in any way.

This product is not a synonym or a substitute for professional medical decisions. The Academician Bookstore and its affiliated companies, writers, participants, partners and sponsors are not responsible for injuries and / or damage to humans and devices arising from all applications based on product information.

In the case of prescription of drugs or other chemicals, checking over the current product information for each drug defined by the manufacturer to determine the recommended dose, duration, method and contraindications of the drug is recommended.

It is the physician's own responsibility to determine the optimal treatment and dose for the patient, and to establish a basis for the knowledge and experience of the treating physician about the patient.

The Academician Bookstore is not responsible for any changes to the product, repackaging and customizations made by a third party.

GENERAL DISTRIBUTION

Akademisyen Kitabevi AŞ

Halk Sokak 5 / A Yenişehir / Ankara

Tel: 0312 431 16 33

siparis@akademisyen.com

www.akademisyen.com

PREFACE

Based in Ankara in Turkey, the independent academic publisher, Akademisyen Publishing House, has been publishing books for almost 35 years. As the directors of Akademisyen Publishing House, we are proud to publish more than 3800 books across disciplines so far, especially in Health Sciences. We also publish books in Social Sciences, Educational Sciences, Physical Sciences, and also books on cultural and artistic topics.

Akademisyen Publishing House has recently commenced the process of publishing books in the international arena with the “Scientific Research Book” series in Turkish and English. The publication process of the books, which is expected to take place in March and September every year, will continue with thematic subtitles across disciplines

The books, which are considered as permanent documents of scientific and intellectual studies, are the witnesses of hundreds of years as an information recording platform. As Akademisyen Publishing House, we are strongly committed to working with a professional team. We understand the expectations of the authors, and we tailor our publishing services to meet their needs. We promise each author for the widest distribution of the books that we publish.

We thank all of the authors with whom we collaborated to publish their books across disciplines.

Akademisyen Publishing House Inc.

CONTENTS

Chapter 1	Cervical Insufficiency	1
	<i>Cem INCEOGLU</i>	
Chapter 2	Frozen Embryo Transfer: Current Strategies and Clinical Outcomes	5
	<i>Tahir ERYILMAZ</i>	
Chapter 3	Lifestyle Interventions and Pelvic Floor Muscle Training in the Management of Female Urinary Incontinence	17
	<i>Tuğba KOLOMUÇ GAYRETLİ</i>	
Chapter 4	Fetal Growth Restriction	31
	<i>R.B.D. KAZĞAN</i>	
	<i>Orhan AY</i>	
Chapter 5	Pelvic Floor Integrity and Female Sexual Function in the Postpartum Period.....	41
	<i>Gamze KARABABA</i>	
Chapter 6	Analysis of Recurrence and Disease-Free Survival Outcomes of Fertility-Preserving Surgical Interventions in Borderline Ovarian Tumours	65
	<i>Dilara SARIKAYA KURT</i>	
	<i>Nurettin BORAN</i>	
Chapter 7	Robotic Gynecologic Surgery.....	83
	<i>Inci ÖZ</i>	

AUTHORS

MD. Orhan AY

Necmettin Erbakan University Consultant
Obstetrician and Gynaecologist, Faculty of
Medicine

Prof. Dr. Nurettin BORAN

Etilik Zübeyde Hanım Women's Health
Training and Research Hospital, Department
of Gynecological Oncology Surgery

MD. Specialist Tahir ERYILMAZ

Etilik City Hospital

MD. Specialist Tuğba KOLOMUÇ

GAYRETLİ

Etilik City Hospital

Cem INCEOGLU

Sırnak State Hospital Correspondence
Department of Obstetrics and Gynecology

MD. Gamze KARABABA

Silvan Dr Yusuf Azizoğlu State Hospital,
Gynaecology and Obstetrics Clinic

MD. R.B.D. KAZĞAN

Resident Physician, Department of Obstetrics
& Gynecology, Faculty of Medicine, Necmettin
Erbakan University

MD. Dilara Sarıkaya KURT

Etilik Zübeyde Hanım Women's Health
Training and Research Hospital, Department
of Obstetrics and Gynecology

MD. İnci ÖZ

Medicana Ataköy Hospital, Department of
Obstetrics and Gynecology

Chapter 1

CERVICAL INSUFFICIENCY

CEM INCEOGLU¹

INTRODUCTION

Cervical insufficiency is typically characterized by painless and premature cervical dilatation and shortening during the second or early third trimester of pregnancy. In this condition, the cervix begins to open prematurely in early gestation, often without pain or uterine contractions. Cervical insufficiency is recognized as one of the leading causes of pregnancy loss and preterm birth and represents an important contributor to perinatal morbidity and mortality (1,2). Diagnosis is usually based on a combination of previous obstetric history, transvaginal ultrasound measurement of cervical length, and other clinical findings (3). A shortened cervical length is one of the most prominent markers of this condition. Once diagnosed, treatment options such as cervical cerclage may be performed to provide support to the cervix and prolong pregnancy (4).

INCIDENCE AND ETIOLOGY

Cervical insufficiency occurs in approximately 0.5–2% of the general population. This prevalence applies to low-risk populations and reflects the wider general population. In women with a history of second-trimester pregnancy loss, however, the incidence rises significantly to about 8%, indicating that cervical insufficiency is more common among women with specific risk factors (3,5). The condition is a multifactorial obstetric pathology arising from congenital, acquired, endocrine, genetic, infectious, and mechanical factors that interact to compromise cervical competence. Congenital causes such as Müllerian duct anomalies can disrupt the histo-morphological integrity of the cervical stroma, weakening the ability to sustain functional continence during pregnancy (6). Connective tissue disorders such as Ehlers-Danlos syndrome contribute to insufficient collagen cross-linking,

¹ Institution: Department of Obstetrics and Gynecology, Sırnak State Hospital Correspondence: ceminceoglu@mail.com, ORCID iD: 0009-0006-6349-6148

REFERENCES

1. Shirodkar VN. A new method of treatment for habitual abortion in the second trimester of pregnancy. *Antiseptic*. 1955;52:299.
2. McDonald IA. Suture of the cervix for inevitable miscarriage. *J Obstet Gynaecol Br Emp*. 1957;64(3):346-50.
3. Alfirevic Z, Stampalija T, Medley N. Cervical stitch (cerclage) for preventing preterm birth in singleton pregnancy. *Cochrane Database Syst Rev*. 2017;(6):CD008991.
4. Owen J, Yost N, Berghella V, Thom E, Swain M, Dildy GA, et al. Midtrimester endovaginal sonography in women at high risk for spontaneous preterm birth. *JAMA*. 2001;286(11):1340-8.
5. Berghella V, Rafael TJ, Szychowski JM, Rust OA, Owen J. Cerclage for short cervix on ultrasound in women with singleton gestations and previous preterm birth: a meta-analysis. *Obstet Gynecol*. 2011;117(3):663-71.
6. Heinonen PK. Complete and partial congenital absence of the cervix. *Int J Gynaecol Obstet*. 1984;22(2):137-42.
7. Ramsay M, Weaver JB. Ehlers-Danlos syndrome and pregnancy: an obstetric perspective. *Obstet Gynecol*. 1999;94(6):1057-62.
8. Tan L, Tay SK. Loop electrosurgical excision procedure (LEEP) in patients with cervical intraepithelial neoplasia. *Ann Acad Med Singap*. 2012;41(10):417-21.
9. Berghella V. Cervical insufficiency. *Obstet Gynecol Clin North Am*. 2012;39(1):43-52.
10. Meis PJ, Klebanoff M, Thom E, Dombrowski MP, Sibai B, Moawad AH, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. *N Engl J Med*. 2003;348(24):2379-85.
11. Conrad KP, Baker VL. Role of relaxin in the endometrial response to implantation. *Ann N Y Acad Sci*. 2013;1271(1):92-6.
12. Malfait F, Symoens S, Coucke P, Nunes L, De Almeida S, De Paepe A. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with major bone involvement. *J Med Genet*. 2007;43(7):488-93.
13. Green JR, Vetrano DL. Cervical incompetence: the hereditary factors. *Am J Obstet Gynecol*. 1985;151(4):439-43.
14. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. *Science*. 2014;345(6198):760-5.
15. Menon R, Fortunato SJ. Infection and the role of inflammation in preterm premature rupture of the membranes. *Best Pract Res Clin Obstet Gynaecol*. 2004;21(3):467-78.
16. Owen J, Hankins G, Iams JD, Berghella V, Sheffield JS, Perez-Delboy A, et al. Multicenter randomized trial of cerclage for preterm birth prevention in high-risk women with shortened midtrimester cervical length. *Am J Obstet Gynecol*. 2009;201(4):375.e1-8.
17. Iams JD, Goldenberg RL, Meis PJ, Mercer BM, Moawad A, Das A, et al. The length of the cervix and the risk of spontaneous premature delivery. *N Engl J Med*. 1996;334(9):567-72.
18. Coutinho CM, Sotiriadis A, Odibo A, Khalil A, D'Antonio F, Feltovich H, et al. ISUOG Practice Guidelines: role of ultrasound in the prediction of spontaneous preterm birth. *Ultrasound Obstet Gynecol*. 2022;60(3):435-56.
19. Novy MJ, Resnik R. Cervical insufficiency and cerclage. In: Creasy RK, Resnik R, editors. *Maternal-Fetal Medicine*. Philadelphia: Saunders; 2002. p. 663-78.
20. MacDonald R, Martin R. Fetal anomalies and their implications for delivery. *Best Pract Res Clin Obstet Gynaecol*. 2003;17(3):353-65.
21. Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Gilstrap LC, Wenstrom KD. *Williams Obstetrics*. 22nd ed. New York: McGraw-Hill; 2005. *Frozen Embryo Transfer: Current Strategies and Clinical Outcomes*

Chapter 2

FROZEN EMBRYO TRANSFER: CURRENT STRATEGIES AND CLINICAL OUTCOMES

Tahir ERYILMAZ¹

1. INTRODUCTION

Frozen embryo transfer (FET) has become an integral component of assisted reproductive technology (ART) over the past decade. The widespread adoption of FET has been driven by advances in vitrification that improved embryo survival after thawing, the increasing use of “freeze-all” strategies, the need for preimplantation genetic testing (PGT), and the promotion of elective single embryo transfer(1, 2). Furthermore, evidence has shown that fresh embryo transfers may be associated with suboptimal outcomes in certain clinical scenarios, including supraphysiologic estradiol levels, premature luteinization, and endometrial asynchrony(3).

FET is currently performed using different endometrial preparation protocols, most commonly natural cycles (NC-FET), modified natural cycles (mNC-FET), and artificial or hormone replacement therapy cycles (HRT-FET). Each protocol offers distinct advantages and limitations, but the efficacy in terms of live birth appears broadly comparable across strategies(4).

Beyond reproductive outcomes, growing evidence suggests that programmed cycles lacking a corpus luteum may be associated with increased risks of hypertensive disorders of pregnancy, including preeclampsia(5). This observation underscores the importance of not only focusing on pregnancy rates but also considering maternal and neonatal safety when selecting FET protocols.

This chapter aims to provide an updated overview of current FET strategies as of 2025, summarizing their efficacy, safety profiles, and implications for clinical decision-making and future research.

¹ MD. Specialist, Etlik City Hospital, tahir_eryilmaz@hotmail.com, ORCID iD: 0000-0001-7029-6159

REFERENCES

1. Chen Z-J, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. *New England Journal of Medicine*. 2016;375(6):523-33.
2. Vuong LN, Dang VQ, Ho TM, Huynh BG, Ha DT, Pham TD, et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. *New England Journal of Medicine*. 2018;378(2):137-47.
3. Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, et al. Transfer of fresh versus frozen embryos in ovulatory women. *New England Journal of Medicine*. 2018;378(2):126-36.
4. Ho VN, Pham TD, Nguyen NT, Wang R, Norman RJ, Mol BW, et al. Livebirth rate after one frozen embryo transfer in ovulatory women starting with natural, modified natural, or artificial endometrial preparation in Viet Nam: an open-label randomised controlled trial. *The Lancet*. 2024;404(10449):266-75.
5. Moreno-Sepulveda J, Espinós JJ, Checa MA. Lower risk of adverse perinatal outcomes in natural versus artificial frozen-thawed embryo transfer cycles: a systematic review and meta-analysis. *Reproductive biomedicine online*. 2021;42(6):1131-45.
6. von Versen-Höynck F, Schaub AM, Chi Y-Y, Chiu K-H, Liu J, Lingis M, et al. Increased pre-eclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. *Hypertension*. 2019;73(3):640-9.
7. Zaat T, Kostova E, Korsen P, Showell M, Mol F, Van Wely M. Obstetric and neonatal outcomes after natural versus artificial cycle frozen embryo transfer and the role of luteal phase support: a systematic review and meta-analysis. *Human reproduction update*. 2023;29(5):634-54.
8. Li C, He Y-C, Xu J-J, Wang Y, Liu H, Duan C-C, et al. Perinatal outcomes of neonates born from different endometrial preparation protocols after frozen embryo transfer: a retrospective cohort study. *BMC pregnancy and childbirth*. 2021;21(1):341.
9. Busnelli A, Schirripa I, Fedele F, Bulfoni A, Levi-Setti PE. Obstetric and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: a systematic review and meta-analysis. *Human Reproduction*. 2022;37(7):1619-41.
10. H. Petersen S, Westvik-Johari K, Spangmose AL, Pinborg A, Romundstad LB, Bergh C, et al. Risk of hypertensive disorders in pregnancy after fresh and frozen embryo transfer in assisted reproduction: a population-based cohort study with within-sibship analysis. *Hypertension*. 2023;80(2):e6-e16.
11. Melo P, Chung Y, Pickering O, Price MJ, Fishel S, Khairy M, et al. Serum luteal phase progesterone in women undergoing frozen embryo transfer in assisted conception: a systematic review and meta-analysis. *Fertility and sterility*. 2021;116(6):1534-56.
12. Miller LM, Wallace G, Birdsall MA, Hammond ER, Peek JC. Dropout rate and cumulative birth outcomes in couples undergoing in vitro fertilization within a funded and actively managed system of care in New Zealand. *Fertility and Sterility*. 2021;116(1):114-22.
13. Nguyen HP, Xiao L, Deane JA, Tan K-S, Cousins FL, Masuda H, et al. N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. *Human Reproduction*. 2017;32(11):2254-68.
14. Choe S, Jun Y, Lee W, Yoon T, Kim S. Association between ambient air pollution and pregnancy rate in women who underwent IVF. *Human reproduction*. 2018;33(6):1071-8.
15. Stavridis K, Kastora SL, Triantafyllidou O, Mavrellos D, Vlahos N. Effectiveness of progesterone rescue in women presenting low circulating progesterone levels around the day of embryo transfer: a systematic review and meta-analysis. *Fertility and Sterility*. 2023;119(6):954-63.
16. Transfer EGGotNoEt, Alteri A, Arroyo G, Baccino G, Craciunas L, De Geyter C, et al. ESHRE guideline: number of embryos to transfer during IVF/ICSI. *Human Reproduction*. 2024;39(4):647-57.
17. Penzias A, Azziz R, Bendikson K, Falcone T, Hansen K, Hill M, et al. Diagnosis and treatment of luteal phase deficiency: a committee opinion. *Fertility and Sterility*. 2021;115(6):416-23.

18. Zhang Y, Wu L, Li TC, Wang CC, Zhang T, Chung JPW. Systematic review update and meta-analysis of randomized and non-randomized controlled trials of ovarian stimulation versus artificial cycle for endometrial preparation prior to frozen embryo transfer in women with polycystic ovary syndrome. *Reproductive Biology and Endocrinology*. 2022;20(1):62.
19. Li D, Khor S, Huang J, Chen Q, Lyu Q, Cai R, et al. Frozen embryo transfer in mildly stimulated cycle with letrozole compared to natural cycle in ovulatory women: a large retrospective study. *Frontiers in Endocrinology*. 2021;12:677689.
20. Guan L, Wu H, Wei C, Pang C, Liu D, Yu X, et al. The effect of mildly stimulated cycle versus artificial cycle on pregnancy outcomes in overweight/obese women with PCOS prior to frozen embryo transfer: a retrospective cohort study. *BMC Pregnancy and Childbirth*. 2022;22(1):394.
21. Liu C, Li Y, Jiang H, Liu Y, Song X. The clinical outcomes of fresh versus frozen embryos transfer in women \geq 40 years with poor ovarian response. *Obstet Gynecol Sci*. 2021;64(64):284-92.
22. Sabbagh R, Meyers A, Korkidakis A, Heyward Q, Penzias A, Sakkas D, et al. Pregnancy outcomes with increasing maternal age, greater than 40 years, in donor oocyte cycles. *Human Reproduction*. 2025;40(7):1325-31.
23. Cimadomo D, de Los Santos MJ, Griesinger G, Lainas G, Le Clef N, McLernon DJ, et al. ESHRE good practice recommendations on recurrent implantation failure. *Human reproduction open*. 2023;2023(3):hoad023.
24. Khodamoradi K, Ibrahim E, Ramasamy R. Can we select human sperm with high DNA integrity for intracytoplasmic sperm injection on the basis of motility and morphology? *Fertil Steril*. 2021;116(5):1319.
25. Yang J, Wen Y, Li D, Hou X, Peng B, Wang Z. Retrospective analysis of the endometrial preparation protocols for frozen-thawed embryo transfer cycles in women with endometriosis. *Reproductive Biology and Endocrinology*. 2023;21(1):83.
26. Bourdon M, Mimouni A, Maignien C, Casalechi M, Vigano P, Bordonne C, et al. Reduced live birth rates following ART in adenomyosis patients: a matched control study. *Human reproduction (Oxford, England)*. 2025;40(5):855-64.
27. Wu Y, Huang J, Zhong G, Lan J, Lin H, Zhang Q. Long-term GnRH agonist pretreatment before frozen embryo transfer improves pregnancy outcomes in women with adenomyosis. *Reproductive Biomedicine Online*. 2022;44(2):380-8.
28. Group EA-OW, Lundin K, Bentzen J, Bozdag G, Ebner T, Harper J, et al. Good practice recommendations on add-ons in reproductive medicine. *Human Reproduction*. 2023;38(11):2062-104.

Chapter 3

LIFESTYLE INTERVENTIONS AND PELVIC FLOOR MUSCLE TRAINING IN THE MANAGEMENT OF FEMALE URINARY INCONTINENCE

Tuğba KOLOMUÇ GAYRETLİ¹

1. INTRODUCTION

Urinary incontinence (UI), according to the International Continence Society (ICS) definition, is the involuntary leakage of urine that causes social or hygienic problems(1). The prevalence of UI in women has been shown to range between 25% and 45% in different community-based studies, and it has been established that the incidence increases significantly with age(2). Urinary incontinence is a complex condition with a multifactorial aetiology, and various anatomical and lifestyle-related risk factors play a role in women. In particular, obstetric factors related to pregnancy and childbirth, obesity, postmenopausal hormonal changes, and previous pelvic floor surgeries are among the most important determinants of incontinence development. The interaction of these factors leads to disruption of the continence mechanism, explaining the high prevalence of UI in women.

Urinary incontinence is not merely a physical health issue, but also a complex condition that profoundly affects women's psychosocial well-being and sexual lives. Social isolation, shame, loss of self-confidence, depression, and anxiety are common accompanying problems due to urinary leakage. Furthermore, urinary leakage during sexual intercourse can lead to sexual aversion, dyspareunia, and problems in partner relationships in women. Therefore, UI impacts not just individual quality of life but also on family relationships and social participation. Current guidelines, particularly the joint NICE and ICS/IUGA reports, strongly recommend conservative treatment, i.e. lifestyle changes and pelvic floor muscle rehabilitation, as the first-line approach to be implemented before surgical or pharmacological methods(3,4). This approach is prioritised in clinical practice

¹ MD. Specialist, Etilik City Hospital, tugbakolomuc@hotmail.com, ORCID iD: 0000-0001-8860-3671

International guidelines—ICS, IUGA, EAU, NICE, and ACOG—strongly recommend these methods as a first-line approach, emphasising that pharmacological or surgical interventions should only be considered in cases where adequate benefit cannot be achieved with conservative treatments. These approaches are low-cost, low-risk, and highly feasible options compared to invasive methods.

Clinical studies and meta-analyses show that PFMT, either alone or combined with lifestyle interventions, provides a 56–70% improvement in symptoms, and that this effect is sustained in long-term follow-ups(18).

In addition, early diagnosis and timely initiation of conservative strategies are essential to prevent progression of symptoms and reduce the need for invasive procedures. Strengthening patient education and promoting adherence through supervised programs or digital health tools can further enhance treatment outcomes and long-term sustainability of continence.

REFERENCES

1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, vd. The standardisation of terminology of lower urinary tract function: Report from the standardisation sub-committee of the International Continence Society. *Neurourology and Urodynamics*. Mart 2002;21(2):167-78.
2. Hunskaar S, Arnold EP, Burgio K, Diokno AC, Herzog AR, Mallett VT. Epidemiology and Natural History of Urinary Incontinence. *International Urogynecology Journal and Pelvic Floor Dysfunction*. 01 Eylül 2000;11(5):301-19.
3. Haylen BT, De Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J, vd. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. *Int Urogynecol J*. Ocak 2010;21(1):5-26.
4. National Institute for Health and Care Excellence (NICE). Urinary incontinence and pelvic organ prolapse in women: Management (NICE guideline NG123). 2019.
5. Subak LL, Wing R, West DS, Franklin F, Vittinghoff E, Creasman JM, vd. Weight Loss to Treat Urinary Incontinence in Overweight and Obese Women. *N Engl J Med*. 29 Ocak 2009;360(5):481-90.
6. Shang X, Fu Y, Jin X, Wang C, Wang P, Guo P, vd. Association of overweight, obesity and risk of urinary incontinence in middle-aged and older women: a meta epidemiology study. *Front Endocrinol*. 10 Ekim 2023;14:1220551.
7. Thom DH, Rortveit G. Prevalence of postpartum urinary incontinence: a systematic review. *Acta Obstet Gynecol Scand*. Aralik 2010;89(12):1511-22.
8. Milsom, I., Altman, D., Cartwright, R., Lapitan, M. C., Nelson, R., Sillén, U., & Tikkinen, K. A. O. (2013). Epidemiology of urinary incontinence (UI) and other lower urinary tract symptoms (LUTS), pelvic organ prolapse (POP) and anal incontinence (AI). In P. Abrams, L. Cardozo, S. Khoury, & A. J. Wein (Eds.), *Incontinence: 5th International Consultation on Incontinence* (5th ed., pp. 15–107). Paris: ICUD-EAU. ISBN 978-9953-493-21-3.
9. European Association of Urology (EAU). (2022). *EAU Guidelines on Urinary Incontinence in Adults*. Arnhem, The Netherlands: EAU Guidelines Office.
10. Bryant CM, Dowell CJ, Fairbrother G. Caffeine reduction education to improve urinary symptoms. *Br J Nurs*. 25 Nisan 2002;11(8):560-5.

11. Arya L. Dietary caffeine intake and the risk for detrusor instability: a case-control study. *Obstetrics & Gynecology*. Temmuz 2000;96(1):85-9.
12. Chiarelli P, Brown W, McElduff P. Leaking urine: Prevalence and associated factors in Australian women. *Neurourol Urodynam*. 1999;18(6):567-77.
13. Markland AD, Richter HE, Kenton KS, Wai C, Nager CW, Kraus SR, vd. Associated factors and the impact of fecal incontinence in women with urge urinary incontinence: from the Urinary Incontinence Treatment Network's Behavior Enhances Drug Reduction of Incontinence study. *American Journal of Obstetrics and Gynecology*. Nisan 2009;200(4):424.e1-424.e8.
14. Hannestad YS, Rortveit G, Sandvik H, Hunskaa S. A community-based epidemiological survey of female urinary incontinence: *Journal of Clinical Epidemiology*. Kasım 2000;53(11):1150-7.
15. DeLancey JOL. Structural support of the urethra as it relates to stress urinary incontinence: The hammock hypothesis. *American Journal of Obstetrics and Gynecology*. Mayıs 1994;170(5):1713-23.
16. Ashton-Miller JA, DeLANCEY JOL. Functional Anatomy of the Female Pelvic Floor. *Annals of the New York Academy of Sciences*. Nisan 2007;1101(1):266-96.
17. Kegel AH. Progressive resistance exercise in the functional restoration of the perineal muscles. *American Journal of Obstetrics and Gynecology*. Ağustos 1948;56(2):238-48.
18. Dumoulin C, Cacciari LP, Hay-Smith EJC. Pelvic floor muscle training versus no treatment, or inactive control treatments, for urinary incontinence in women. Cochrane Incontinence Group, editör. *Cochrane Database of Systematic Reviews* [Internet]. 04 Ekim 2018 [a.yer 28 Ağustos 2025];2018(10). Erişim adresi: <http://doi.wiley.com/10.1002/14651858.CD005654.pub4>
19. Berghmans B, Kampen MV, B² K, Morkved S, editörler. *Evidence-based physical therapy for the pelvic floor: bridging science and clinical practice*. Second edition. Edinburgh: Churchill Livingstone; 2015.
20. Herderschee R, Hay-Smith EJC, Herbison GP, Roovers JP, Heineman MJ. Feedback or biofeedback to augment pelvic floor muscle training for urinary incontinence in women. Cochrane Incontinence Group, editör. *Cochrane Database of Systematic Reviews* [Internet]. 06 Temmuz 2011 [a.yer 28 Ağustos 2025]; Erişim adresi: <https://doi.wiley.com/10.1002/14651858.CD009252>
21. Bo K, Talseth T, Holme I. Single blind, randomised controlled trial of pelvic floor exercises, electrical stimulation, vaginal cones, and no treatment in management of genuine stress incontinence in women. *BMJ*. 20 Şubat 1999;318(7182):487-93.
22. Practice Bulletin No. 155: Urinary Incontinence in Women. *Obstetrics & Gynecology*. Kasım 2015;126(5):e66-81.

Chapter 4

FETAL GROWTH RESTRICTION

R.B.D. KAZĞAN¹
Orhan AY²

PHYSIOLOGY OF FETAL GROWTH

Fetal growth is the increase in fetal weight, length, and organ function from fertilization to birth, driven by cell proliferation, cell enlargement, and extracellular matrix accumulation. Fetal growth can be influenced by a range of maternal and fetal factors, including changes in blood pressure, disturbances of glucose metabolism, and major congenital anomalies (1).

Until 16 weeks' gestation, normal fetal growth is driven approximately predominantly by cellular hyperplasia. From 16 to 32 weeks, growth reflects a combined contribution of hyperplasia and hypertrophy. Beyond 32 weeks, rapid accretion of adipose, muscle, and connective tissues occurs mainly through cellular hypertrophy (2).

Fetal growth and development are orchestrated by a complex hormonal network. Within the intrauterine milieu, these hormones function as cues for both maturation and nutrient supply, enabling context-appropriate adaptation of tissue growth and differentiation. Central to this regulation is the insulin-like growth factor (IGF) axis most notably IGF-I and IGF-II which governs fetal and placental growth across gestation. Pathogenic alterations in IGF1, IGF2, or the IGF1 receptor (IGF1R) are associated with fetal growth restriction, whereas loss of the IGF2 receptor (IGF2R) activity or IGF2 overexpression can result in accelerated, even overgrowth, phenotypes (3).

¹ Resident Physician, Department of Obstetrics & Gynecology, Faculty of Medicine, Necmettin Erbakan University, durmazberfin375@gmail.com, ORCID iD: 0009-0005-0906-884X

² Consultant Obstetrician and Gynaecologist, Faculty of Medicine, Necmettin Erbakan University, orhan.ay.5561@gmail.com, ORCID iD: 0000-0002-9685-5374

Early pregnancy uterine artery Doppler screening facilitates risk stratification and planning of enhanced surveillance. By contrast, bed rest, high-protein diets, and routine oxygen therapy lack evidence for FGR prevention (14).

REFERENCES

1. Fenton TR, Elmrayed S, Alshaikh BN. Fenton Third-Generation Growth Charts of Preterm Infants Without Abnormal Fetal Growth: A Systematic Review and Meta-Analysis. *Paediatric and perinatal epidemiology*. 2025;39(6):543-55.
2. Shrivastava D, Master A. Fetal Growth Restriction. *Journal of obstetrics and gynaecology of India*. 2020;70(2):103-10.
3. Gicquel C, Le Bouc Y. Hormonal regulation of fetal growth. *Hormone research*. 2006;65 Suppl 3:28-33.
4. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. *Ultrasound Obstet Gynecol*. 2016;48(3):333-9.
5. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marçal VM, et al. Fetal growth restriction: current knowledge. *Archives of gynecology and obstetrics*. 2017;295(5):1061-77.
6. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. *American journal of obstetrics and gynecology*. 2018;218(2s):S745-s61.
7. Benítez-Marín MJ, Marín-Clavijo J, Blanco-Elena JA, Jiménez-López J, González-Mesa E. Brain Sparing Effect on Neurodevelopment in Children with Intrauterine Growth Restriction: A Systematic Review. *Children* (Basel, Switzerland). 2021;8(9).
8. Rai H, Soni S, Shukla AK, Pandey M, Singh MP, Gupta VK. Fetal Biometric Parameters in USG for Early Detection of Fetal Growth Restriction. *Journal of pharmacy & bioallied sciences*. 2025;17(Suppl 1):S840-s2.
9. Chew LC, Osuchukwu OO, Reed DJ, Verma RP. Fetal growth restriction. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
10. Antepartum Fetal Surveillance: ACOG Practice Bulletin, Number 229. *Obstetrics and gynecology*. 2021;137(6):e116-e27.
11. Suekane T, Tachibana D, Kurihara Y, Yokoi N, Seo N, Kitada K, et al. Time interval analysis of ductus venosus and cardiac cycles in relation with umbilical artery pH at birth in fetal growth restriction. *BMC pregnancy and childbirth*. 2021;21(1):671.
12. Lawn JE, Ohuma EO, Bradley E, Idueta LS, Hazel E, Okwaraji YB, et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. *Lancet* (London, England). 2023;401(10389):1707-19.
13. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. *Annals of the New York Academy of Sciences*. 2006;1092:138-47.
14. Nawathe A, David AL. Prophylaxis and treatment of foetal growth restriction. *Best practice & research Clinical obstetrics & gynaecology*. 2018;49:66-78.

Chapter 5

PELVIC FLOOR INTEGRITY AND FEMALE SEXUAL FUNCTION IN THE POSTPARTUM PERIOD

Gamze KARABABA¹

INTRODUCTION

The pelvic floor is a critical anatomical structure for maintaining continence, organ support, postural stability, and sexual function(1) . The postpartum period is one of the periods during which a woman undergoes the most rapid physiological, hormonal, anatomical, and psychosocial changes. The increased uterine volume during pregnancy, hormonal effects on connective tissue, mechanical stress associated with labour, and perineal trauma create multifaceted stress on the pelvic floor. Therefore, pelvic floor dysfunction and sexual dysfunction are common in the postpartum period(2) .

Approximately 40–60% of women experience sexual dysfunction, dyspareunia, vaginal dryness, or loss of libido within the first 6 months of the postpartum period(3,4) . The mode of delivery, degree of perineal laceration, episiotomy, OASIS injuries, duration of labour, assisted vaginal delivery, hormonal effects of lactation, and the mother's psychosocial status are key factors influencing the development of this condition. Perineal trauma and changes in pelvic floor muscle function, in particular, make it difficult to regain sexual function in both the acute and chronic periods(3,5) .

The tissue tension and disruption of muscle-tendon integrity that the pelvic floor undergoes during pregnancy and childbirth can pave the way for problems such as pelvic organ prolapse, urinary incontinence, faecal incontinence, and chronic pelvic pain(6) . It is known that these anatomical and functional changes also have a direct effect on sexual function(7) . Furthermore, the suppression of oestrogen levels during lactation can cause vaginal atrophy, dryness, and reduced lubrication, thereby increasing dyspareunia(8) .

¹ Medical Doctor, Silvan Dr Yusuf Azizoğlu State Hospital, Gynaecology and Obstetrics Clinic,krbbgmz@gmail.com, ORCID iD: 0000-0002-0210-5135

approaches for improving sexual function. Local oestrogen treatments, lubricants, tissue mobilisation, and lifestyle adjustments provide meaningful improvement in certain patient groups. Psychosexual support is an indispensable part of treatment, especially for women experiencing a pain–anxiety cycle and those with a history of birth trauma.

In conclusion, postpartum pelvic floor and sexual dysfunction are important but often overlooked areas of women's health. When managed with early diagnosis, accurate assessment, and a holistic approach, both pelvic floor function and sexual quality of life can be significantly improved. Informing and supporting women during this process and offering personalised treatment according to their needs will positively affect long-term health outcomes.

REFERENCES

1. Barrett G, Pendry E, Peacock J, Victor C, Thakar R, Manyonda I. Women's sexual health after childbirth. *BJOG Int J Obstet Gynaecol.* 2000 Feb;107(2):186–95.
2. Dietz HP. Pelvic floor trauma following vaginal delivery. *Curr Opin Obstet Gynecol.* 2006 Oct;18(5):528–37.
3. Leeman LM, Rogers RG. Sex after childbirth: postpartum sexual function. *Obstet Gynecol.* 2012 Mar;119(3):647–55.
4. Jawed-Wessel S, Sevick E. The Impact of Pregnancy and Childbirth on Sexual Behaviors: A Systematic Review. *J Sex Res.* 2017 June 13;54(4–5):411–23.
5. Manresa M, Pereda A, Goberna-Tricas J, Webb SS, Terre-Rull C, Bataller E. Postpartum perineal pain and dyspareunia related to each superficial perineal muscle injury: a cohort study. *Int Urogynecology J.* 2020 Nov;31(11):2367–75.
6. Baruch Y, Manodoro S, Barba M, Cola A, Re I, Frigerio M. Prevalence and Severity of Pelvic Floor Disorders during Pregnancy: Does the Trimester Make a Difference? *Healthcare.* 2023 Apr 11;11(8):1096.
7. Karsten MDA, Wekker V, Bakker A, Groen H, Olff M, Hoek A, et al. Sexual function and pelvic floor activity in women: the role of traumatic events and PTSD symptoms. *Eur J Psychotraumatology.* 11(1):1764246.
8. BİLGİ K, BİLGİ Ç. Postpartum Dönemin Görünmeyen Yüzü: Cinsel İşlev Bozukluğu. *Karya J Health Sci.* 2021 Dec 31;2.
9. Serati M, Salvatore S, Siesto G, Cattoni E, Zanirato M, Khullar V, et al. Female sexual function during pregnancy and after childbirth. *J Sex Med.* 2010 Aug;7(8):2782–90.
10. Bharucha AE. Pelvic floor: anatomy and function. *Neurogastroenterol Motil.* 2006 July;18(7):507–19.
11. Stoker J. Anorectal and pelvic floor anatomy. *Best Pract Res Clin Gastroenterol.* 2009;23(4):463–75.
12. Raizada V, Mittal RK. PELVIC FLOOR ANATOMY AND APPLIED PHYSIOLOGY. *Gastroenterol Clin North Am.* 2008 Sept;37(3):493–vii.
13. Lawson JO. Pelvic anatomy. I. Pelvic floor muscles. *Ann R Coll Surg Engl.* 1974 May;54(5):244–52.
14. Roos AM, Speksnijder L, Steensma AB. Postpartum sexual function; the importance of the levator ani muscle. *Int Urogynecology J.* 2020;31(11):2261–7.
15. Alkatout I, Wedel T, Pape J, Possover M, Dhanawat J. Review: Pelvic nerves – from anatomy and physiology to clinical applications. *Transl Neurosci.* 2021 Oct 8;12(1):362–78.

16. Snooks SJ, Setchell M, Swash M, Henry MM. Injury to innervation of pelvic floor sphincter musculature in childbirth. *Lancet Lond Engl*. 1984 Sept 8;2(8402):546–50.
17. Barber MD. Contemporary views on female pelvic anatomy. *Cleve Clin J Med*. 2005 Dec 1;72(Suppl_4):S3–S3.
18. Andrews V, Thakar R, Sultan AH, Jones PW. Evaluation of postpartum perineal pain and dyspareunia--a prospective study. *Eur J Obstet Gynecol Reprod Biol*. 2008 Apr;137(2):152–6.
19. Westerik-Verschuur L, Lutke Holzik-Mensink M, Wieffer-Platvoet M, van der Velde M. Sexual Aspects of the Female Pelvic Floor. In: Geuens S, Polona Mivšek A, Gianotten WoetL, editors. *Midwifery and Sexuality* [Internet]. Cham: Springer International Publishing; 2023 [cited 2025 Dec 3]. p. 113–23. Available from: https://doi.org/10.1007/978-3-031-18432-1_10
20. Lien KC, Mooney B, DeLancey JOL, Ashton-Miller JA. Levator ani muscle stretch induced by simulated vaginal birth. *Obstet Gynecol*. 2004 Jan;103(1):31–40.
21. Kearney R, Miller JM, Ashton-Miller JA, DeLancey JOL. Obstetric factors associated with levator ani muscle injury after vaginal birth. *Obstet Gynecol*. 2006 Jan;107(1):144–9.
22. Abdool Z, Thakar R, Sultan AH. Postpartum female sexual function. *Eur J Obstet Gynecol Reprod Biol*. 2009 Aug;145(2):133–7.
23. Elenskaia K, Thakar R, Sultan AH, Scheer I, Beggs A. The effect of pregnancy and childbirth on pelvic floor muscle function. *Int Urogynecology J*. 2011 Nov;22(11):1421–7.
24. MacLennan AH, Nicolson R, Green RC, Bath M. Serum relaxin and pelvic pain of pregnancy. *Lancet Lond Engl*. 1986 Aug 2;2(8501):243–5.
25. Elenskaia K, Thakar R, Sultan AH, Scheer I, Beggs A. The effect of pregnancy and childbirth on pelvic floor muscle function. *Int Urogynecol J Pelvic Floor Dysfunct*. 2011 Nov;22(11):1421–7.
26. Boeldt D, Bird I. Vascular Adaptation in Pregnancy and Endothelial Dysfunction in Preeclampsia. *J Endocrinol*. 2017 Jan;232(1):R27–44.
27. Zarzecka J, Pycek M, Pietrzykowska-Szczubelek K, Barcz E, Pomian A. Influence of pregnancy and mode of delivery on pelvic floor function: a review of literature. *Ginekol Pol*. 2024;95(10):830–4.
28. Betsch M, Wehrle R, Dor L, Rapp W, Jungbluth P, Hakimi M, et al. Spinal posture and pelvic position during pregnancy: a prospective rasterstereographic pilot study. *Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc*. 2015 June;24(6):1282–8.
29. Rortveit G, Daltveit AK, Hannestad YS, Hunskaar S, Norwegian EPINCONT Study. Urinary incontinence after vaginal delivery or cesarean section. *N Engl J Med*. 2003 Mar 6;348(10):900–7.
30. National Guideline Alliance (UK). Risk factors for pelvic floor dysfunction: Pelvic floor dysfunction: prevention and non-surgical management: Evidence review B [Internet]. London: National Institute for Health and Care Excellence (NICE); 2021 [cited 2025 Dec 3]. (NICE Evidence Reviews Collection). Available from: <http://www.ncbi.nlm.nih.gov/books/NBK579611/>
31. Kearney R, Miller JM, Ashton-Miller JA, DeLancey JOL. Obstetrical factors associated with levator ani muscle injury after vaginal birth. *Obstet Gynecol*. 2006 Jan;107(1):144–9.
32. Dietz HP, Shek C. Levator avulsion and grading of pelvic floor muscle strength. *Int Urogynecol J Pelvic Floor Dysfunct*. 2008 May;19(5):633–6.
33. Sideris M, McCaughey T, Hanrahan JG, Arroyo-Manzano D, Zamora J, Jha S, et al. Risk of obstetric anal sphincter injuries (OASIS) and anal incontinence: A meta-analysis. *Eur J Obstet Gynecol Reprod Biol*. 2020 Sept;252:303–12.
34. Mary DrVP, Kumar DrGA, Padmanaban S. Obstetric anal sphincter injuries (Oasis): A prospective observational longitudinal study. *Int J Clin Obstet Gynaecol*. 2019 Sept 1;3(5):22–6.
35. Okeahialam NA, Sultan AH, Thakar R. The prevention of perineal trauma during vaginal birth. *Am J Obstet Gynecol*. 2024 Mar;230(3S):S991–1004.
36. Signorello LB, Harlow BL, Chekos AK, Repke JT. Postpartum sexual functioning and its relationship to perineal trauma: a retrospective cohort study of primiparous women. *Am J Obstet Gynecol*. 2001 Apr;184(5):881–8; discussion 888–890.

37. Carroli G, Mignini L. Episiotomy for vaginal birth. Cochrane Database Syst Rev. 2009 Jan 21;(1):CD000081.
38. Handa VL, Blomquist JL, McDermott KC, Friedman S, Muñoz A. Pelvic Floor Disorders After Childbirth: Effect of Episiotomy, Perineal Laceration, and Operative Birth. *Obstet Gynecol*. 2012 Feb;119(2 Pt 1):233–9.
39. Memon HU, Handa VL. Vaginal childbirth and pelvic floor disorders. *Womens Health Lond Engl*. 2013 May;9(3):10.2217/whe.13.17.
40. Lukacz ES, Lawrence JM, Contreras R, Nager CW, Luber KM. Parity, mode of delivery, and pelvic floor disorders. *Obstet Gynecol*. 2006 June;107(6):1253–60.
41. Memon H, Handa VL. Pelvic floor disorders following vaginal or cesarean delivery. *Curr Opin Obstet Gynecol*. 2012 Oct;24(5):349–54.
42. Fonti Y, Giordano R, Cacciatore A, Romano M, La Rosa B. Post partum pelvic floor changes. *J Prenat Med*. 2009;3(4):57–9.
43. Dietz HP, Wilson PD. Childbirth and pelvic floor trauma. *Best Pract Res Clin Obstet Gynaecol*. 2005 Dec;19(6):913–24.
44. Thom DH, Rortveit G. Prevalence of postpartum urinary incontinence: a systematic review. *Acta Obstet Gynecol Scand*. 2010 Dec;89(12):1511–22.
45. McDonald EA, Gartland D, Small R, Brown SJ. Dyspareunia and childbirth: a prospective cohort study. *BJOG Int J Obstet Gynaecol*. 2015 Apr;122(5):672–9.
46. Gutzeit O, Levy G, Lowenstein L. Postpartum Female Sexual Function: Risk Factors for Postpartum Sexual Dysfunction. *Sex Med*. 2019 Dec 16;8(1):8–13.
47. Szöllösi K, Komka K, Szabó L. Risk factors for sexual dysfunction during the first year postpartum: A prospective study. *Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet*. 2022 May;157(2):303–12.
48. Rathfisch G, Dikencik BK, Kizilkaya Beji N, Comert N, Tekirdag AI, Kadioglu A. Effects of perineal trauma on postpartum sexual function. *J Adv Nurs*. 2010 Dec;66(12):2640–9.
49. Khajehei M, Doherty M, Tilley PJM, Sauer K. Prevalence and risk factors of sexual dysfunction in postpartum Australian women. *J Sex Med*. 2015 June;12(6):1415–26.
50. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. *Obstet Gynecol*. 1997 Apr;89(4):501–6.
51. Diez-Itza I. Urinary incontinence during pregnancy and in the postpartum period. *Nat Rev Urol*. 2025 Oct 6;
52. Guise JM, Morris C, Osterweil P, Li H, Rosenberg D, Greenlick M. Incidence of fecal incontinence after childbirth. *Obstet Gynecol*. 2007 Feb;109(2 Pt 1):281–8.
53. Lavand'homme P. Postpartum chronic pain. *Minerva Anestesiol*. 2019 Mar;85(3):320–4.
54. Von Bargen E, Haviland MJ, Chang OH, McKinney J, Hacker MR, Elkadry E. Evaluation of Postpartum Pelvic Floor Physical Therapy on Obstetrical Anal Sphincter Injury: A Randomized Controlled Trial. *Female Pelvic Med Reconstr Surg*. 2021 May 1;27(5):315–21.
55. Chevalier F, Fernandez-Lao C, Cuesta-Vargas AI. Normal reference values of strength in pelvic floor muscle of women: a descriptive and inferential study. *BMC Womens Health*. 2014 Nov 25;14:143.
56. Wiegel M, Meston C, Rosen R. The female sexual function index (FSFI): cross-validation and development of clinical cutoff scores. *J Sex Marital Ther*. 2005;31(1):1–20.
57. Avery K, Donovan J, Peters TJ, Shaw C, Gotoh M, Abrams P. ICIQ: a brief and robust measure for evaluating the symptoms and impact of urinary incontinence. *Neurourol Urodyn*. 2004;23(4):322–30.
58. Saga S, Vinsnes AG, Norton C, Haugan G. Symptoms of anal incontinence and quality of life: a psychometric study of the Norwegian version of the ICIQ-B amongst hospital outpatients. *Arch Public Health*. 2022 Dec 9;80:251.
59. Davidson N. REEDA: evaluating postpartum healing. *J Nurse Midwifery*. 1974;19(2):6–8.

60. Declercq E, Cunningham DK, Johnson C, Sakala C. Mothers' reports of postpartum pain associated with vaginal and cesarean deliveries: results of a national survey. *Birth* Berkeley Calif. 2008 Mar;35(1):16–24.
61. Man R, Le Vance J, Popa Y, Wilson D, Tohill S, Maltby J, et al. Healing-assessment tools for perineal and cesarean section wounds in postpartum women: A scoping review. *Acta Obstet Gynecol Scand*. 2025 Nov 11;
62. Cox JL, Chapman G, Murray D, Jones P. Validation of the Edinburgh postnatal depression scale (EPDS) in non-postnatal women. *J Affect Disord*. 1996 July 29;39(3):185–9.
63. Grekin R, O'Hara MW. Prevalence and risk factors of postpartum posttraumatic stress disorder: a meta-analysis. *Clin Psychol Rev*. 2014 July;34(5):389–401.
64. von Sydow K. Sexuality during pregnancy and after childbirth: a metacontent analysis of 59 studies. *J Psychosom Res*. 1999 July;47(1):27–49.
65. Dobaria DG, Tafti D, Cohen HL. Pelvic Ultrasound. In: StatPearls [Internet] [Internet]. StatPearls Publishing; 2025 [cited 2025 Dec 4]. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK470360/>
66. Seynaeve R, Billiet I, Vossaert P, Verleyen P, Steegmans A. MR imaging of the pelvic floor. *JBR-BTR Organe Soc R Belge Radiol SRBR Orgaan Van K Belg Ver Voor Radiol KBVR*. 2006;89(4):182–9.
67. Tirumani Setty P, Prichard D, Chakraborty S, Zinsmeister AR, Bharucha AE. NORMAL VALUES FOR ASSESSMENT OF ANAL SPHINCTER MORPHOLOGY, ANORECTAL MOTION, AND PELVIC ORGAN PROLAPSE WITH MRI IN HEALTHY WOMEN. *Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc*. 2018 July;30(7):e13314.
68. Robert R, Prat-Pradal D, Labat JJ, Bensignor M, Raoul S, Rebai R, et al. Anatomic basis of chronic perineal pain: role of the pudendal nerve. *Surg Radiol Anat SRA*. 1998;20(2):93–8.
69. Meekins AR, Siddiqui NY. Diagnosis and Management of Postpartum Pelvic Floor Disorders. *Obstet Gynecol Clin North Am*. 2020 Sept;47(3):477–86.
70. Golmakani N, Zare Z, Khadem N, Shareh H, Shakeri MT. The effect of pelvic floor muscle exercises program on sexual self-efficacy in primiparous women after delivery. *Iran J Nurs Midwifery Res*. 2015;20(3):347–53.
71. Yuan F, Hu Y, Yang C. Effect of health education combined with biofeedback electrical stimulation on early pelvic floor function and psychology: A retrospective study. *Medicine (Baltimore)*. 2024 Aug 23;103(34):e39321.
72. Zhong F, Miao W, Yu Z, Hong L, Deng N. Clinical effect of electrical stimulation biofeedback therapy combined with pelvic floor functional exercise on postpartum pelvic organ prolapse. *Am J Transl Res*. 2021;13(6):6629–37.
73. Kotarinos R. Myofascial pelvic pain. *Curr Pain Headache Rep*. 2012 Oct;16(5):433–8.
74. Pacik PT. Understanding and treating vaginismus: a multimodal approach. *Int Urogynecology J*. 2014 Dec;25(12):1613–20.
75. Smith PE, McLaughlin EM, Pandya LK, Hade EM, Lynch CD, Hudson CO. A pilot randomized controlled trial of vaginal estrogen on postpartum atrophy, perineal pain, and sexual function. *Int Urogynecology J*. 2022 Dec;33(12):3383–90.
76. Pinheiro E, Bogen DL, Hoxha D, Wisner KL. Transdermal Estradiol Treatment during Breastfeeding: Maternal and Infant Serum Concentrations. *Arch Womens Ment Health*. 2016 Apr;19(2):409–13.
77. Huang WC, Su CY, Wang YL. The efficacy of fractional CO₂ laser treatment on postpartum vulvovaginal atrophy: A prospective observational study. *Taiwan J Obstet Gynecol*. 2025 May;64(3):463–8.
78. Filippini M, Farinelli M, Lopez S, Ettore C, Gulino FA, Capriglione S. Postpartum perineal pain: may the vaginal treatment with CO₂ laser play a key-role in this challenging issue? *J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet*. 2021 Apr;34(8):1190–7.

79. Bretelle F, Fabre C, Golka M, Pauly V, Roth B, Bechadergue V, et al. Capacitive-resistive radiofrequency therapy to treat postpartum perineal pain: A randomized study. *PloS One*. 2020;15(4):e0231869.
80. Fiani B, Sekhon M, Doan T, Bowers B, Covarrubias C, Barthelmass M, et al. Sacroiliac Joint and Pelvic Dysfunction Due to Symphysiolysis in Postpartum Women. *Cureus*. 13(10):e18619.
81. Jibrel F, Cox CK, Fairchild PS, Fenner DE, Suresh S, Swenson CW. Indications for surgical intervention in a postpartum pelvic floor specialty clinic. *Int Urogynecology J*. 2020 Nov;31(11):2233–6.

Chapter 6

ANALYSIS OF RECURRENCE AND DISEASE-FREE SURVIVAL OUTCOMES OF FERTILITY-PRESERVING SURGICAL INTERVENTIONS IN BORDERLINE OVARIAN TUMOURS

Dilara Sarıkaya KURT¹
Nurettin BORAN²

1. INTRODUCTION

Borderline ovarian tumors are defined as an intermediate category among epithelial ovarian tumors because, although they exhibit cellular proliferation and nuclear atypia, they lack an infiltrative growth pattern. These neoplasms, which constitute approximately 10–20% of all ovarian tumors, have an annual incidence of 1.8–4.8 per 100,000 women (1). A clinically important feature is their occurrence in a younger age group compared to other types of ovarian cancer; one-third of cases are under 40 years of age (1–3). This situation places fertility preservation and reduction of postoperative morbidity at the center of clinical management, making treatment decisions more complex. Borderline ovarian tumors are often asymptomatic, and diagnosis is frequently made through pathological examination of samples obtained during surgery. The FIGO staging system is used as the basis for staging the disease, guiding both survival and relapse risk (2). Although radical approaches can be used in surgical treatment, fertility-preserving conservative surgery has become an important option, especially for women with remaining reproductive potential. In the literature, unilateral salpingo-oophorectomy (USO) is more commonly preferred in premenopausal patients, while bilateral salpingo-oophorectomy (BSO) is preferred in postmenopausal patients. However, recurrence rates after oophorectomy or cystectomy performed for fertility preservation can reach up to 75% (3,4).

¹ MD, Etilik Zübeyde Hanım Women's Health Training and Research Hospital, Department of Obstetrics and Gynecology, dilarasarikaya30@gmail.com, ORCID iD: 0000-0002-1492-0305

² Prof. Dr., Etilik Zübeyde Hanım Women's Health Training and Research Hospital, Department of Gynecological Oncology Surgery, nboranoglu[@gmail.com], ORCID iD: 0000-0002-0367-5551

REFERENCES

1. Lenhard MS, Mitterer S, Küpper C, et al. Long-term follow-up after ovarian borderline tumor: relapse and survival in a large patient cohort. *Eur J Obstet Gynecol Reprod Biol.* 2009 Aug;145(2):189–94.
2. Tempfer CB, Polterauer S, Bentz EK, et al. Accuracy of intraoperative frozen section analysis in borderline tumors of the ovary: a retrospective analysis of 96 cases and review of the literature. *Gynecol Oncol.* 2007 Nov;107(2):248–52.
3. Cadron I, Amant F, Van Gorp T, et al. The management of borderline tumours of the ovary. *Curr Opin Oncol.* 2006 Sep;18(5):488–93.
4. Coumbos A, Sehouli J, Chekerov R, et al. Clinical management of borderline tumours of the ovary: results of a multicentre survey of 323 clinics in Germany. *Br J Cancer.* 2009 Jun 2;100(11):1731–8.
5. Hart WR, Norris HJ. Borderline and malignant mucinous tumors of the ovary. Histologic criteria and clinical behavior. *Cancer.* 1973 May;31(5):1031–45.
6. Hart WR. Borderline epithelial tumors of the ovary. *Mod Pathol.* 2005 Feb;18 Suppl 2:S33–50.
7. Gershenson DM, Silva EG, Levy L, et al. Ovarian serous borderline tumors with invasive peritoneal implants. *Cancer.* 1998 Mar 15;82(6):1096–103.
8. Roth LM, Emerson RE, Ulbright TM. Ovarian endometrioid tumors of low malignant potential: a clinicopathologic study of 30 cases with comparison to well-differentiated endometrioid adenocarcinoma. *Am J Surg Pathol.* 2003 Sep;27(9):1253–9.
9. Bell KA, Kurman RJ. A clinicopathologic analysis of atypical proliferative (borderline) tumors and well-differentiated endometrioid adenocarcinomas of the ovary. *Am J Surg Pathol.* 2000 Nov;24(11):1465–79.
10. Cuatrecasas M, Catasus L, Palacios J, et al. Transitional cell tumors of the ovary: a comparative clinicopathologic, immunohistochemical, and molecular genetic analysis of Brenner tumors and transitional cell carcinomas. *Am J Surg Pathol.* 2009 Apr;33(4):556–67.
11. Ali RH, Seidman JD, Luk M, et al. Transitional cell carcinoma of the ovary is related to high-grade serous carcinoma and is distinct from malignant brenner tumor. *Int J Gynecol Pathol.* 2012 Nov;31(6):499–506.
12. Jones MB. Borderline ovarian tumors: current concepts for prognostic factors and clinical management. *Clin Obstet Gynecol.* 2006 Sep;49(3):517–25.
13. Chen S, Leitao MM, Tornos C, et al. Invasion patterns in stage I endometrioid and mucinous ovarian carcinomas: a clinicopathologic analysis emphasizing favorable outcomes in carcinomas without destructive stromal invasion and the occasional malignant course of carcinomas with limited destructive stromal invasion. *Mod Pathol.* 2005 Jul;18(7):903–11.
14. Skírnisdóttir I, Garmo H, Wilander E, et al. Borderline ovarian tumors in Sweden 1960–2005: trends in incidence and age at diagnosis compared to ovarian cancer. *Int J Cancer.* 2008 Oct 15;123(8):1897–901.
15. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. *Best Pract Res Clin Obstet Gynaecol.* 2017 May;41:3–14.
16. Purdie DM, Bain CJ, Siskind V, et al. Ovulation and risk of epithelial ovarian cancer. *Int J Cancer.* 2003 Mar 20;104(2):228–32.
17. Harris HR, Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. *Fertil Res Pract.* 2016;2:14.
18. Jordan SJ, Whiteman DC, Purdie DM, et al. Does smoking increase risk of ovarian cancer? A systematic review. *Gynecol Oncol.* 2006 Dec;103(3):1122–9.
19. Stratton JF, Pharoah P, Smith SK, et al. A systematic review and meta-analysis of family history and risk of ovarian cancer. *Br J Obstet Gynaecol.* 1998 May;105(5):493–9.
20. Boyd J. Specific keynote: hereditary ovarian cancer: what we know. *Gynecol Oncol.* 2003 Jan;88(1 Pt 2):S8–10; discussion S11–13.

21. Tokunaga H, Shimada M, Ishikawa M, et al. TNM classification of gynaecological malignant tumours, eighth edition: changes between the seventh and eighth editions. *Jpn J Clin Oncol.* 2019 Apr 1;49(4):311–20.
22. Longacre TA, McKenney JK, Tazelaar HD, et al. Ovarian serous tumors of low malignant potential (borderline tumors): outcome-based study of 276 patients with long-term (> or =5-year) follow-up. *Am J Surg Pathol.* 2005 Jun;29(6):707–23.
23. Segal GH, Hart WR. Ovarian serous tumors of low malignant potential (serous borderline tumors). The relationship of exophytic surface tumor to peritoneal ‘implants’. *Am J Surg Pathol.* 1992 Jun;16(6):577–83.
24. Rao GG, Skinner E, Gehrig PA, et al. Surgical staging of ovarian low malignant potential tumors. *Obstet Gynecol.* 2004 Aug;104(2):261–6.
25. Camatte S, Morice P, Thoury A, et al. Impact of surgical staging in patients with macroscopic ‘stage I’ ovarian borderline tumours: analysis of a continuous series of 101 cases. *Eur J Cancer.* 2004 Aug;40(12):1842–9.
26. Boran N, Cil AP, Tulunay G, et al. Fertility and recurrence results of conservative surgery for borderline ovarian tumors. *Gynecol Oncol.* 2005 Jun;97(3):845–51.
27. Tinelli R, Tinelli A, Tinelli FG, et al. Conservative surgery for borderline ovarian tumors: a review. *Gynecol Oncol.* 2006 Jan;100(1):185–91.
28. Donnez J, Munschke A, Berliere M, et al. Safety of conservative management and fertility outcome in women with borderline tumors of the ovary. *Fertil Steril.* 2003 May;79(5):1216–21.
29. Fan Y, Zhang YF, Wang MY, et al. Influence of lymph node involvement or lymphadenectomy on prognosis of patients with borderline ovarian tumors: A systematic review and meta-analysis. *Gynecol Oncol.* 2021 Sep;162(3):797–803.
30. Maltaris T, Boehm D, Dittrich R, et al. Reproduction beyond cancer: a message of hope for young women. *Gynecol Oncol.* 2006 Dec;103(3):1109–21.
31. Makar AP, Tropé C. Fertility preservation in gynecologic cancer. *Acta Obstet Gynecol Scand.* 2001 Sep;80(9):794–802.
32. Plett H, Harter P, Ataseven B, et al. Fertility-sparing surgery and reproductive-outcomes in patients with borderline ovarian tumors. *Gynecol Oncol.* 2020 May;157(2):411–7.
33. Zanetta G, Rota S, Chiari S, et al. Behavior of borderline tumors with particular interest to persistence, recurrence, and progression to invasive carcinoma: a prospective study. *J Clin Oncol.* 2001 May 15;19(10):2658–64.
34. Kaern J, Tropé CG, Abeler VM. A retrospective study of 370 borderline tumors of the ovary treated at the Norwegian Radium Hospital from 1970 to 1982. A review of clinicopathologic features and treatment modalities. *Cancer.* 1993 Mar 1;71(5):1810–20.

Chapter 7

ROBOTIC GYNECOLOGIC SURGERY

Inci ÖZ¹

INTRODUCTION

Robotic surgery has become one of the most rapidly evolving areas of medical practice over the past two decades, adding a new dimension to the concept of minimally invasive surgery, particularly in gynecology and urogynecology. Technological advantages such as three-dimensional imaging, enhanced instrument articulation, tremor filtration, and improved surgical precision have enabled robotic platforms to increase both clinical success and patient safety. The introduction of robotic systems into surgical practice in the first half of the twenty-first century is regarded as a highly significant and exciting technological advancement. These systems, which are expected to hold substantial potential for the future, continue to develop at a remarkable pace today. These advancements have not only improved surgical outcomes but have also reshaped operating room dynamics, nursing roles, and all perioperative care processes. It is noted that the use of robotic surgical systems in minimally invasive procedures offers numerous potential advantages. Unlike the two-dimensional imaging provided by modern laparoscopic systems, robotic systems offer continuous three-dimensional visualization and a pronounced sense of depth, which is particularly beneficial for surgeons accustomed to open surgery (128).

In gynecologic surgical practice, the increasing use of robotic systems in complex procedures such as hysterectomy, myomectomy, ovarian cyst excision, and endometriosis surgery contributes to conducting operations in a safer, more controlled, and more predictable manner. In the field of urogynecology, robotic approaches have become an increasingly preferred standard in pelvic organ prolapse, sacrocolpopexy, fistula repairs, and complex reconstructive surgeries.

¹ MD., Medicana Ataköy Hospital, Department of Obstetrics and Gynecology , opdrincioz@gmail.com, ORCID iD: 0000-0001-9160-2733

Given the high-technology structure of robotic surgery, the educational pathway for nurses must also be addressed within a systematic and continuously updated framework. Structured educational algorithms—including foundational theoretical instruction, simulation-based skill development, clinical observation, supervised practice, and competency assessment—enable nurses to integrate into robotic surgery safely and effectively. Additionally, the implementation of quality and safety standards, the use of checklist-based care protocols, the strengthening of intra-team communication, and the support of technological adaptation are of strategic importance for the sustainable success of robotic surgery.

Robotic gynecologic surgery and nursing practice represent a multidisciplinary transformation in contemporary healthcare. The role of robotic systems in enhancing surgical efficiency, strengthening patient safety, and standardizing care quality continues to expand. The sustainable management of this comprehensive transformation requires equipping both surgeons and nursing teams with advanced technological and clinical competencies. This book chapter aims to provide clinicians and nursing professionals with an up-to-date, comprehensive, and interdisciplinary reference by addressing all components of the robotic surgery ecosystem from a holistic perspective. In this regard, advancing robotic surgery practices on a scientific basis, strengthening educational processes, and promoting a quality and safety culture will pave the way for a higher level of clinical excellence in the future.

REFERENCES

1. Bağcı Türkmen S. 2007–2016 yılları arasında kliniğimizde myomektomi yapılan vakaların değerlendirilmesi. Tıpta Uzmanlık Tezi. İstanbul: T.C. Sağlık Bilimleri Üniversitesi, Ümraniye Eğitim ve Araştırma Hastanesi; 2017.
2. Nezhat CR, Burrell MO, Nezhat FR, Benigno BB, Welander CE. Laparoscopic radical hysterectomy with paraaortic and pelvic node dissection. *Am J Obstet Gynecol*. 1992; 166:864-865.
3. Nezhat C, Hood J, Winer W, Nezhat F, Crowgey SR, Garrison CP. Videolaseroscopy and laser laparoscopy in gynaecology. *Br J Hosp Med*. 1987; 38:219-24.
4. Satava RM. Virtual reality, telesurgery, and the new world order of medicine. *J Image Guid Surg*. 1995; 1:12-6.
5. Schlag PM, Moesta KT, Rakovsky S, Graschew G. Telemedicine: the new must for surgery. *Arch Surg*. 1999; 134:1216-21.
6. Ballantyne GH. Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results. *Surg Endosc* 2002; 10: 1389–1402.
7. Visco AG, Advincula AP. Robotic gynecologic surgery. *Obstet Gynecol* 2008;112:1369– 84
8. Karagün Ş. Endometrial kanser cerrahisinde laparotomi, laparoskopi ve robotik cerrahının perioperatif sonuçlarının karşılaştırılması. Tıpta Uzmanlık Tezi. Adana: T.C. Sağlık Bilimleri Üniversitesi, Adana Numune Eğitim ve Araştırma Hastanesi; 2016.
9. Camarillo DB, Krummel TM, Salisbury Jr JK. Robotic technology in surgery: past, present, and future. *The American Journal of Surgery*. 2004;188(4):2-15.

10. Green RW, Miles BA. Transoral Robotic Management of the Oropharynx In: Genden EM, editor. Head and Neck Cancer: Management and Reconstruction. 2 ed. New York: Thieme Medical Publishers; 2020. p.154-69.
11. Yağız S. Oral ve transoral robotik cerrahi müdahalelerde etik sorunlar: bir gömülü teori araştırması. Doktora Tezi. İstanbul: İstanbul Üniversitesi, Sağlık Bilimleri Enstitüsü, Tıp Tarihi ve Etik Anabilim Dalı; 2023.
12. Bergeles C, Yang G-Z. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. *IEEE Transactions on Biomedical Engineering*. 2013;61(5):1565-76.
13. Ranav D, Teixeira J. History of computer-assisted surgery. *Surgical Clinics*. 2020;100(2):209-18.
14. Marescaux J, Rubino F. Transcontinental robot-assisted remote telesurgery, feasibility and potential applications. *Teleophthalmology*. 2006;261-5.
15. Intuitive Surgical. The da Vinci® surgery experience: robotics fact sheet. Available from: <https://www.intuitive.com/en-us/about-us/newsroom/robotics-research> [Accessed: 2025].
16. Hockstein NG, O'Malley Jr BW. Transoral robotic surgery. *Operative Techniques in Otolaryngology-Head and Neck Surgery*. 2008;19(1):67-71.
17. Ballantyne GH. Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results. *Surg Endosc* 2002; 10: 1389-1402.
18. Kavoussi LR, Moore RG, Adams JB, Partin AW. Comparison of Robotic Versus Human Laparoscopic Camera Control. *J. Urol* 1995; 154:2134-2136.
19. Stylopoulos N, Rattner D. Robotics and ergonomics. *Surg Clin North Am* 2003; 6:1321-1337.
20. Yıldırım G. Jinekolojide robotik cerrahi. *İstanbul Tip Fakültesi Dergisi*. 2009;72(4).
21. Sarlos D, Kots L, Stevanovic N, von Felten S, Schar G. Robotic compared with conventional laparoscopic hysterectomy: a randomized controlled trial. *Obstet Gynecol* 2012;120:604-11
22. Anger JT, Mueller ER, Tarnay C, Smith B, Stroupe K, Rosenman A, et al. Robotic compared with laparoscopic sacrocolpopexy: a randomized controlled trial [published erratum appears in *Obstet Gynecol* 2014;124:165]. *Obstet Gynecol* 2014;123:5-12
23. Boggess JF, Gehrig PA, Cantrell L, Shafer A, Ridgway M, Skinner EN, et al. A casecontrol study of robot-assisted type III radical hysterectomy with pelvic lymph node dissection compared with open radical hysterectomy. *Am J Obstet Gynecol* 2008;199:357.e1-357.e7.
24. Subramaniam A, Kim KH, Bryant SA, Zhang B, Sikes C, Kimball KJ, et al. A cohort study evaluating robotic versus laparotomy surgical outcomes of obese women with endometrial carcinoma. *Gynecol Oncol* 2011;122:604-7.
25. Barnett JC, Judd JP, Wu JM, Scales CD Jr, Myers ER, Havrilesky LJ. Cost comparison among robotic, laparoscopic, and open hysterectomy for endometrial cancer. *Obstet Gynecol* 2010;116:685-93.
26. Magrina JF. Robotic surgery in gynecology. *Eur J Gynaecol Oncol* 2007;28:77.
27. Ota T, Degani A, Schwartzman D, Zubiate B, McGarvey J, Choset H, Zenati MA, A highly articulated robotic surgical system for minimally invasive surgery. *Ann Thorac Surg*, 87;1253-1256:2009
28. Liu, H., Lu, D., Wang, L., Shi, G., Song, H., & Clarke, J. (2012b). Robotic Surgery For Benign Gynaecological Disease. *Cochrane Database of Systematic Reviews*, 2, 1-20. <https://doi.org/10.1002/14651858.CD008978.PUB2/INFORMATION/EN>
29. Reynolds, R. K., & Advincula, A. P. (2006). Robot-Assisted Laparoscopic Hysterectomy: Technique And Initial Experience. *The American Journal of Surgery*, 191(4), 555-560. <https://doi.org/10.1016/J.AMJSURG.2006.01.011>.
30. Holloway, R. W., Patel, S. D., Ahmad, S., Holloway, R. W., & Oncology Program, G. (2009). Robotic Surgery In Gynecology. *Scandinavian Journal of Surgery*, 98(1), 96-109.
31. Committee on Gynecologic Practice and Society of Gynecologic Surgeons. (2015). Bilim Merkezi 628 Sayılı Komite Görüşü 10.1097/01.aog.00004617611.47981.07. *Obstetrics and Gynecology*, 125(3), 760-767. <https://sci-hub.hkvisa.net/10.1097/01.AOG.0000461761.47981.07>.

32. Giri, S. & Sarkar, D. K. (2012). Current Status of Robotic Surgery. *Indian Journal of Surgery*, 74(3), 242-247. <https://doi.org/10.1007/S12262-012-0595-4/FIGURES/3>.
33. Intuitive Surgical. (2020a). Q2 2020 Intuitive Investor Presentation.
34. Bell, M. C., Torgerson, J., Seshadri-Kreaden, U., Suttle, A. W., & Hunt, S. (2008). Comparison of Outcomes and Cost for Endometrial Cancer Staging Via 354 Traditional Laparotomy, Standard Laparoscopy and Robotic Techniques. *Gynecologic Oncology*, 111(3), 407-411. <https://doi.org/10.1016/J.YGNO.2008.08.022>
35. Alkatout, I., Mettler, L., Maass, N., & Ackermann, J. (2016). Robotic Surgery in Gynecology. *Journal of the Turkish German Gynecological Association*, 17(4), 232. <https://doi.org/10.5152/JTGGA.2016.16187>
36. ALANBAY İ, KINCI F, KINCI Ö (2020) Kadın Hastalıkları ve Doğum. İçinde: Terapotik Jinekolojik Prosedürler: Histerektomi, Myomektomi, Ed: Alanbay İ, Karşahin E, Modern Tip Kitabevi, Ankara,1171-1395
37. LANFRANCO R A, CASTELLANOS A E, DESAİ P J, MEYERS C W (2004). Robotic surgery a current perspective, *Annals of Surgery* 239(1): 14-21.
38. ACOG (2015). Committee Opinion: Jinekolojide Robotik Cerrahi. Erişim Adresi: (http://www.jed.org.tr/konu/dosyalar/Jinekolojide_Robotik_Cerrahi.).Erişim Tarihi:2025
39. DEDE M, YENEN C M, KESKİN U, ALANBAY İ, ÖZKAN Ö (2013). Robotik histerektomi: Türkiye'de üniversite hastanelerindeki ilk deneyim. *Gülhane Tip Dergisi* (55): 141-145.
40. Taş Ö. Robotik, laparoskopik ve abdominal histerektominin yaşam kalitesi, cinsel işlev ve maliyet etkililik açısından değerlendirilmesine yönelik bir araştırma. Doktora Tezi. Ankara: Ankara Üniversitesi, Sağlık Bilimleri Enstitüsü, Sağlık Kurumları Yönetimi Anabilim Dalı; 2021.
41. Weinberg L, et al. Robotic Surgery in Gynecology: An Updated Systematic Review. *Journal of Minimally Invasive Gynecology*. 2011
42. Kurup M, et al. Robotic Surgery in Gynaecology: A Retrospective Single-Centre Study. 2023.
43. Lawrie TA, et al. Robot-assisted surgery in gynaecology. *Cochrane Database Syst Rev*. 2019.
44. Lenfant L, et al. Robotic-assisted benign hysterectomy compared with other approaches. 2023.
45. Ma Y. The future of robot-assisted surgery in gynecology. 2025.
46. Hernández A, et al. Pioneering robotic surgery for complex gynecologic conditions. 2025.
47. Wright JD, Herzog TJ, Tsui J, Ananth CV, Lewin SN, Lu YS, Neugut AI, Hershman DL. Nationwide trends in the performance of inpatient hysterectomy in the United States. *Obstet Gynecol* 2013;122 : 233-41.
48. Jacoby VL, Autry A, Jacobson G, Domush R, Nakagawa S, Jacoby A. Nationwide use of laparoscopic hysterectomy compared with abdominal and vaginal approaches. *Obstet Gynecol* 2009;114:1041-8.
49. De Wilde RL, Herrmann A. Robotic surgery - advance or gimmick? *Best Pract Res Clin Obstet Gynaecol* 2013;27(3):457-69.
50. Wright JD, Ananth CV, Lewin SN, Burke WM, Lu YS, Neugut AI, Herzog TJ, Hershman DL. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. *JAMA* 2013;309:689-98.
51. Lim PC, Kang E, Park do H. A comparative detail analysis of the learning curve and surgical outcome for robotic hysterectomy with lymphadenectomy versus laparoscopic hysterectomy with lymphadenectomy in treatment of endometrial cancer: A case-matched controlled study of the first one hundred twenty two patients. *Gynecol Oncol* 2011; 120:413-8.
52. Sinha R, Sanjay M, Rupa B, Kumari S. Robotic surgery in gynecology. *J Minim Access Surg* 2015 ;11(1):50-9.
53. Cronin B, Sung VW, Matteson KA. Vaginal cuff dehiscence: Risk factors and management. *Am J Obstet Gynecol* 2012;206:284-8.
54. Uccella S, Ceccaroni M, Cromi A, Malzoni M, Berretta R, De Iaco P, Roviglione G, Bogani G, Minelli L, Ghezzi F. Vaginal cuff dehiscence in a series of 12.398 hysterectomies: Effect of different types of colpotomy and vaginal closure. *Obstet Gynecol* 2012;120:516-23.

55. Rettenmaier MA, Abaid LN, Brown JV 3rd, Mendivil AA, Lopez KL, Goldstein BH. Dramatically reduced incidence of vaginal cuff dehiscence in gynecologic patients undergoing endoscopic closure with barbed sutures: A retrospective cohort study. *Int J Surg.* 2015; 14;19:27-30.
56. ASLAN E (2020). Bening Uterin Hastalıklar Nedeniyle Yapılan Histerektomilerde Vajinal, Laparaskopik, Abdominal Histerektomi Yöntemlerinin Karşılaştırılması. Tıpta Uzmanlık Tezi. T.C Sağlık Bilimleri Üniversitesi Gaziosmanpaşa Taksim Sağlık Uygulama ve Araştırma Merkezi, İstanbul.
57. Carbonnel M, et al. Robotic Hysterectomy for Benign Indications. 2021.
58. ACOG Committee Opinion. Robot-Assisted Surgery for Noncancerous Gynecologic Conditions. 2020.
59. Smorgick N, et al. Robotic-assisted hysterectomy: patient selection and outcomes. 2017.
60. Takmaz Ö, Güngör M. Robotic versus laparoscopic hysterectomy; comparison of early outcomes. 2020.
61. Johns Hopkins Medicine. Hysterectomy – Reasons for a hysterectomy. 2025.
62. Lee JH, et al. What is the role of robotic surgery in ovarian cystectomy with fertility preservation? 2023.
63. Won S, et al. Ovarian Reserve After Robotic Versus Laparoscopic Single-Site Ovarian Cystectomy for Mature Cystic Teratoma: A Prospective Comparative Study. 2025.
64. Sinha R, et al. Ovarian Loss in Laparoscopic and Robotic Cystectomy Compared Using Artificial Intelligence-Powered Pathology Software. 2024.
65. Gungor M, Kahraman K, Ozbasli E, Genim C. Ovarian cystectomy for a dermoid cyst with the new single-port robotic system. Taylor & Francis Ltd. 2015.
66. Sethi N, Agrawal M, Patel A, Reddy LS, Bhatt DM. Surgical technique and fertility outcomes: a comprehensive review of open and laparoscopic cystectomy in women of reproductive age. . 2024.
67. Margossian H, Falcone T. Robotically assisted laparoscopic hysterectomy and adnexal surgery. *J Laparoendosc Adv Surg Tech A.* 2001; 11:161-5.
68. Diaz-Arrastia C, Jurnalov C, Gomez G, Townsend C Jr. Laparoscopic hysterectomy using a computerenhanced surgical robot. *Surg Endosc.* 2002; 16:1271- 3
69. Degueldre M, Vandromme J, Huong PT, Cadiere GB. Robotically assisted laparoscopic microsurgical tubal reanastomosis: a feasibility study. *Fertil Steril* 2000; 74:1020 -3.
70. DiMarco DS, Chow GK, Gettman MT, Elliott DS. Robot-assisted laparoscopic sacrocolpopexy for treatment of vaginal vault prolapse. *Urology* 2004; 63:373-6.
71. Advincula AP, Song A, Burke W, Reynolds RK. Preliminary experience with robot-assisted laparoscopic myomectomy. *J Am Assoc Gynecol Laparosc* 2004; 11:511- 8.
72. Dharia SP, Falcone T. Robotics in reproductive medicine. *Fertil Steril.* 2005;84:1-11.
73. Nezhat C, Lavie O, Lemyre M, Unal E, Nezhat CH, Nezhat F. Robot-assisted laparoscopic surgery in gynecology: scientific dream or reality? *Fertil Steril.* 2008; 23.
74. Field JB, Benoit MF, Dinh TA, Diaz-Arrastia C. Computer-enhanced robotic surgery in gynecologic oncology. *Surg Endosc* 2007;21: 244-246.
75. Magrina JF. Robotic surgery in gynecology. *Eur J Gynaecol Oncol* 2007;28:77-82.
76. Nezhat C, Lavie O, Hsu S, Watson J, Barnett O, Lemyre M. Robotic-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy-A retrospective matched control study. *Fertil Steril* 2009;91:556-9.
77. Ascher-Walsh CJ, Capes TL. Robot-assisted laparoscopic myomectomy is an improvement over laparotomy in women with a limited number of myomas. *J Minim Invasive Gynecol* 2010;17:306-10.
78. Pitter MC, Gargiulo AR, Bonaventura LM, Lehman JS, Srouji SS. Pregnancy outcomes following robot-assisted myomectomy. *Hum Reprod* 2013;28:99-108.
79. Doğan S, Şimşek T. Jinekolojide robotik cerrahının yeri. *Akdeniz Tip Dergisi.* 2016; (derleme). doi:10.17954/amj.2016.36.

80. Bilir E, Derin X, Darkovski JV, Kaur MM, Ackermann J, Maass N, et al. A systematic review and bibliometric analysis of robot vs. laparoscopic surgery in urogynecology: current trends and future directions. [Journal name not provided]. 2024. PMID: 41184478; PMCID: PMC12583385.
81. Simoncini, T., Panattoni, A., Aktas, M. et al. Robot-assisted pelvic floor reconstructive surgery: an international Delphi study of expert users. *Surg Endosc* 37, 5215–5225 (2023). <https://doi.org/10.1007/s00464-023-10001-4>
82. Daykan Y, Rotem R, O'Reilly BA. Robot-assisted laparoscopic pelvic floor surgery: review. 2023; Published online 14 September 2023.
83. Nobbenhuis MAE, Gul N, Barton-Smith P, O'Sullivan O, Moss E, Ind TEJ, on behalf of the Royal College of Obstetricians and Gynaecologists. Robotic Surgery in Gynaecology. RCOG Scientific Impact Paper No. 72.
84. Poutakidis, G., Falconer, C., Altman, D. et al. Pelvic Organ Prolapse Repair Using Robotic-Assisted Sacral Hysterocolpopexy vs Vaginal Surgery with the Uphold™ System: 1-Year Clinical Outcomes. *Int Urogynecol J* 36, 585–597 (2025). <https://doi.org/10.1007/s00192-024-06017-6>
85. Clifton MM, Pizarro-Berdichevsky J, Goldman HB. Robotic female pelvic floor reconstruction: a review. 2016. URL: <https://www.sciencedirect.com/science/article/abs/pii/S0090429515011401>
86. Linder BJ, Occhino JA. Robotic-assisted surgery for pelvic organ prolapse: sacrocolpopexy and beyond. *Journal of Gynecologic Surgery*. 2023;39(1):25–29.
87. Popov A, Klyushnikov I, Idashkin A. Surgical technique of robot-assisted laparoscopic sacro-colpopexy. *Gynecology and Pelvic Medicine*. 2020;3. Available from: <https://gpm.amegroups.org/article/view/5925>
88. Kumar S, et al. *Robot-assisted laparoscopic repair of injuries to bladder and ureter following gynecological surgery and obstetric injury*. 2021.
89. Rangel EM, Sotelo R. *Robotic surgery for urinary fistulae in females: a narrative review*. *Gynecol Pelvic Med*. 2025.
90. Arcieri M, et al. *Exploring Urinary Tract Injuries in Gynecological Surgery*. *Healthcare (Basel)*. 2025.
91. Zambrano Moreira EL, Angulo Vera PC, Villapradó Vélez SG, Carreño Navia LM, Vite Solorzano FA, Alarcón Cano DF. Nursing in robotic surgery: adapting skills and new roles. *Nursing Depths Series*. 2025;4:291. doi:10.56294/nds2025291.
92. Gonzalo de Diego B, González Aguña A, Fernández Batalla M, Herrero Jaén S, Sierra Ortega A, Barchino Plata R, et al. Competencies in the robotics of care for nursing robotics: a scoping review. [Journal name not provided]. 2024.
93. Redondo-Sáenz D, Cortés-Salas C, Parrales-Mora M. Perioperative nursing role in robotic surgery: an integrative review. *Journal of PeriAnesthesia Nursing*. 2023; Published online 6 February 2023. doi:10.1016/j.jopan.2022.11.001.
94. Kang MJ, De Gagni, JC, Kang HS. Perioperative nurses' work experience with robotic surgery: A focus group study [Internet]. *Comput Inform Nurs*. 2016[cited 2024 Jun 19];34(4):152–8. DOI:10.1097/CIN.0000000000000224
95. Tiferes J, Hussein AA, Bisantz A, Higginbotham DJ, SharifM, Kozlowski J et al. Are gestures worth a thousand words? Verbal and nonverbal communication during robot-assisted surgery [Internet]. *Appl Ergon*. 2019[cited 2024 Jun 19]; 78:251–62, DOI: 10.1016/j.apergo.2018.02.015
96. Celik SS, Koken ZO, Canda AE, Esen T. Experiences of perioperative nurses with robotic-assisted surgery: A systematic review of qualitative studies [Internet]. *J Robot Surg*. 2023[cited 2024 Jun 19];17:785–95. DOI: 10.1007/s11701-022-01511-9
97. da Silva Ângelo C, da Silva EAL, da Souza, A, de Bonfim IM, Joaquim EHG, de Pinho Apezzato ML. Posicionamento cirúrgico em cirurgia robótica pediátrica: Relato de experiência. *Revista SOBECC* [Journal of Brazilian Association of Nurses in Surgical Centers, Anesthetic Recovery and Material and Sterilization Centers]. 2020

98. Porto C, Catal E. A comparative study of the opinions, experiences and individual innovative-ness characteristics of operating room nurses on robotic surgery 2024.
99. Kural, A. R., & Atuğ, F. (2010). Ürolojide robotik cerrahi uygulamaları / The applications of robotic surgery in urology. *Turkish Journal of Urology*, 36(3), 248–257.
100. Giudice, L. C., & Kao, L. C. (2004). Endometriosis. *The Lancet*, 364(9447), 1789–1799.
101. Burney, R. O., & Giudice, L. C. (2013). The pathogenesis of endometriosis. In C. Nezhat, F. Nezhat, & C. Nezhat (Eds.), *Nezhat's video-assisted and robotic-assisted laparoscopy and hysteroscopy* (4th ed., pp. 252–259). Cambridge University Press.
102. Balasch, J., Creus, M., Fàbregues, F., et al. (1996). Visible and nonvisible endometriosis at laparoscopy in fertile and infertile women and in patients with chronic pelvic pain: A prospective study. *Human Reproduction*, 11(2), 387–391.
103. Leibson, C. L., Good, A. E., Hass, S. L., et al. (2004). Incidence and characterization of diagnosed endometriosis in a geographically defined population. *Fertility and Sterility*, 82(2), 314–321.
104. Lucidi, R. S., & Witz, C. A. (2007). Endometriosis. In R. Alvero & W. D. Schlaff (Eds.), *Endocrinology and infertility: The requisites in obstetrics and gynecology* (1st ed., pp. 213–228). Mosby Elsevier.
105. McLeod, B. S., & Retzlaff, M. G. (2010). Epidemiology of endometriosis: An assessment of risk factors. *Clinical Obstetrics and Gynecology*, 53(2), 389–396.
106. Kappou, D., Matalliotakis, M., & Matalliotakis, I. (2010). Medical treatments for endometriosis. *Minerva Ginecologica*, 62, 415–432.
107. Scarselli, G., Rizello, F., Cammelli, F., Ginocchini, L., & Coccia, M. E. (2005). Diagnosis and treatment of endometriosis: A review. *Minerva Ginecologica*, 57(1), 55–78.
108. Nezhat, C., Bueschler, E., Paka, C., et al. (2013). Video-assisted laparoscopic treatment of endo-metriosis. In C. Nezhat, F. Nezhat, & C. Nezhat (Eds.), *Nezhat's video-assisted and robotic-assisted laparoscopy and hysteroscopy* (4th ed., pp. 265–296). Cambridge University Press.
109. Paraiso, M. F., Walters, M. D., Rackley, R. R., Melek, S., & Hugney, C. (2005). Laparoscopic and abdominal sacral colpopexies: A comparative cohort study. *American Journal of Obstetrics and Gynecology*, 192, 1752–1758.
110. Stylopoulos, N., & Rattner, D. (2003). Robotics and ergonomics. *Surgical Clinics of North America*, 83, 1321–1337.
111. Degueldre, M., Vandromme, J., Huong, P. T., & Cadiere, G. B. (2000). Robotically assisted laparoscopic microsurgical tubal reanastomosis: A feasibility study. *Fertility and Sterility*, 74, 1020–1023.
112. Chammas, M. F., Jr., Kim, F. J., Barbarino, A., Hubert, N., Feuillu, B., Coissard, A., et al. (2008). Asymptomatic rectal and bladder endometriosis: A case for robotic-assisted surgery. *Canadian Journal of Urology*, 15, 4097–4100.
113. Ercoli, A., D'asta, M., Fagotti, A., Fanfani, F., Romano, F., Baldazzi, G., et al. (2012). Robotic treatment of colorectal endometriosis: Technique, feasibility and short-term results. *Human Reproduction*, 27, 722–726.
114. Abo, C., Roman, H., Bridoux, V., Huet, E., Tuech, J. J., & Resch, B., et al. (2016). Management of deep infiltrating endometriosis by laparoscopic route with robotic assistance: 3-year experience. *Journal of Gynecology Obstetrics and Biology of Reproduction*. Advance online publication.
115. Nezhat, C., Lewis, M., Kotikela, S., Veeraswamy, A., Saadat, L., Hajhosseini, B., et al. (2010). Robotic versus standard laparoscopy for the treatment of endometriosis. *Fertility and Sterility*, 94, 2758–2760.
116. Magrina, J. F., Espada, M., Kho, R. M., Cetta, R., Chang, Y. H., & Magtibay, P. M. (2015). Surgical excision of advanced endometriosis: Perioperative outcomes and impacting factors. *Journal of Minimally Invasive Gynecology*, 22, 944–950.
117. Samuelsson, S., & Sjövall, A. (1968). On the diagnostic value of laparoscopy in ovarian endo-metriosis. *Acta Obstetricia et Gynecologica Scandinavica*, 47, 350–360.

118. Palmer, R. (1970). Laparoscopy in diagnosis and treatment of endometriosis and pelvic adhesions. *Nederlandsch Tijdschrift voor Verloskunde en Gynaecologie*, 70, 293–296.
119. Li, C., Wang, J., Ji, J. T., & Zhang, N. (2010). Review of the developmental history of robotic surgery. *Zhonghua Yi Shi Za Zhi*, 40, 229–233.
120. Giannini, A., Pisaneschi, S., Malacarne, E., Cela, V., Melfi, F., Perutelli, A., et al. (2018). Robotic approach to ureteral endometriosis: Surgical features and perioperative outcomes. *Frontiers in Surgery*, 5, 51.
121. Alboni, C., Farulla, A., Facchinetto, F., & Ercoli, A. (2021). Robot-assisted nerve-sparing resection of bilateral parametrial deep infiltrating endometriosis. *Journal of Minimally Invasive Gynecology*, 28, 18–19.
122. Hickman, L. C., Kotlyar, A., Luu, T. H., & Falcone, T. (2016). Do we need a robot in endometriosis surgery? *Minerva Ginecologica*, 68, 380–387.
123. Seamon, L. G., Bryant, S. A., Rheaume, P. S., et al. (2009). Comprehensive surgical staging for endometrial cancer in obese patients: Comparing robotics and laparotomy. *Obstetrics & Gynecology*, 114, 16–21.
124. Hagen, M. E., Jung, M. K., Fakhro, J., et al. (2018). Robotic versus laparoscopic stapling during robotic Roux-en-Y gastric bypass surgery: A case-matched analysis of costs and clinical outcomes. *Surgical Endoscopy*, 32, 472–477.
125. Ferrari, F. A., et al. (2024). Robotic surgery for deep-infiltrating endometriosis: Is it time for a paradigm shift? *Frontiers in Medicine*, 11, 1387036.
126. Song, Z., et al. (2023). Assessing the role of robotic surgery versus laparoscopy for endometriosis: A systematic review and meta-analysis. *Medicine*, 102(50)
127. Renso, M., et al. (2025). Robot-assisted surgery for the radical treatment of deep infiltrating endometriosis with colorectal involvement: Short- and mid-term outcomes in a multicenter study. *BMJ Open*, 15(11), e108125.