

GLOBAL PERSPECTIVES IN EDUCATIONAL RESEARCH

II

Editors
Semra MİRİCİ
Duygu SÖNMEZ

© Copyright 2025

Printing, broadcasting and sales rights of this book are reserved to Academician Bookstore House Inc. All or parts of this book may not be reproduced, printed or distributed by any means mechanical, electronic, photo-copying, magnetic paper and/or other methods without prior written permission of the publisher. Tables, figures and graphics cannot be used for commercial purposes without permission. This book is sold with banderol of Republic of Türkiye Ministry of Culture.

ISBN
978-625-375-863-9

Page and Cover Design
Akademisyen Dizgi Ünitesi

Book Title
Global Perspectives in Educational Research II

Publisher Certificate Number
47518

Editors
Semra MİRİCİ
ORCID iD: 0000-0003-4999-8628
Duygu SÖNMEZ
ORCID iD: 0000-0001-7821-6344

Printing and Binding
Vadi Matbaacılık

Publishing Coordinator
Yasin DİLMEŃ

Bisac Code
SCI049000

DOI
10.37609/akya.3979

Library ID Card
Global Perspectives in Educational Research II / ed. Semra Mirici, Duygu Sönmez.
Ankara : Akademisyen Yayınevi Kitabevi, 2025.
223 p. : figure, table. ; 160x235 mm.
Includes References.
ISBN 9786253758639

GENERAL DISTRIBUTION **Akademisyen Kitabevi AŞ**

Halk Sokak 5 / A
Yenişehir / Ankara
Tel: 0312 431 16 33
siparis@akademisyen.com

www.akademisyen.com

CONTENTS

Chapter 1	Computer-Based Sustainable Attention Test for University Students: A Norm Study	1
	<i>Şeyma ULUKÖK YILDIRIM</i>	
	<i>Duygu SÖNMEZ</i>	
Chapter 2	Cross-Cultural Validation of The Science Motivation Questionnaire II (SMQ-II) with Turkish Preservice Teachers Across Science and Non-Science Majors.....	11
	<i>Yüksel ALTUN</i>	
	<i>Sevda SERİN</i>	
Chapter 3	The Role of Environmental Education in Sustainable Development: New Approaches and Global Trends.....	35
	<i>Beril Salman AKIN</i>	
Chapter 4	Evaluation of Prospective Biology Teachers' Pedagogical Content Knowledge on Air Pollution	59
	<i>Zehra YILDIRIM</i>	
	<i>Beril Salman AKIN</i>	
Chapter 5	Media Literacy as A 21st Century Skill in Flux: How Prospective Teachers Deal With Disability, Racism, and Sexism	83
	<i>Tunay TAŞ</i>	
	<i>Ayça ASLAN</i>	
Chapter 6	A Design-Based Research Approach to Teaching Antibiotic Resistance Through A Workshop With Preservice Teachers.....	95
	<i>Merve ÖZDEMİR</i>	
	<i>Semra MİRİCİ</i>	
Chapter 7	Artificial Intelligence in Science Teaching	113
	<i>Zeki BAYRAM</i>	
	<i>Özden Bilge ÇALIM</i>	

Chapter 8	A Systematic Review on The Role of Digital Tools in Biotechnology Education	127
	<i>Aycan KİBAR ERDOĞAN</i> <i>Semra MİRİCİ</i>	
Chapter 9	Understanding Science Motivation Across Teacher Education Programs: A Comprehensive Demographic Analysis	143
	<i>Yüksel ALTUN</i> <i>Sevda SERİN</i>	
Chapter 10	A New Perspective on Grigol Robakidze's Work as A Trace of European Cultural Diplomacy.....	165
	<i>Lasha KHOZREVANİDZE</i> <i>Guguli TURMANİDZE</i>	
Chapter 11	Culturally Responsive Classroom Management and The Reflections of Teacher Competencies in Educational Processes	181
	<i>Esen SUCUOĞLU</i> <i>Nesrin M. BAHÇELERLİ</i>	
Chapter 12	Examination of Biology Teacher Candidates' Views on Correct Breathing Techniques	189
	<i>Yeşim ÇAĞLI</i> <i>Hikmet TÜRK KATIRCIOĞLU</i>	

AUTHORS

Prof. Dr. Beril Salman AKIN

Gazi University, Faculty of Gazi Education,
Department of Biology Education

Prof. Dr. Yüksel ALTUN

Gazi University, Gazi Faculty of Education,
Department of Chemistry Education

Asst. Prof. Dr. Ayça ASLAN

Yozgat Bozok University

Nesrin M. BAHÇELERLİ

Near East University, Faculty of Tourism,
Tourism Research Center, Nicosia, North
Cyprus

Assoc. Prof. Dr. Zeki BAYRAM

Hacettepe Üniversitesi

Aycan KİBAR ERDOĞAN

MSc Student, Gazi University, Gazi Faculty
of Education

Prof. Guguli TURMANİDZE

Grigol Robakidze University

Prof. Dr. Hikmet TÜRK KATIRCIOĞLU

Gazi University

Prof. Lasha KHOZREVANİDZE

Grigol Robakidze University

Prof. Dr. Semra MİRİÇİ

Gazi University, Gazi Faculty of Education,
Department of Mathematics and Science
Teaching

Sevda SERİN

Teacher, Ministry of National Education

Prof. Dr. Esen SUCUOĞLU

Near East University, Faculty of Education,
Nicosia, North Cyprus

Assoc. Prof. Dr. Duygu SÖNMEZ

Hacettepe University, Faculty of
Education, Department of Mathematics
and Science Teaching

Asst. Prof. Dr. Tunay TAŞ

Yozgat Bozok University, Faculty of
Education, Department of Foreign
Languages Teaching

Zehra YILDIRIM

Master Student, Department of Biology
Education, Faculty of Gazi Education

Res. Ass. Dr. Şeyma ULUKÖK

YILDIRIM

Necmettin Erbakan University, Ahmet
Keleşoğlu Faculty of Education

Özden Bilge ÇALIM

Hacettepe Üniversitesi, Doktora Öğrencisi

Yeşim ÇAĞLI

M.S, Gazi University

Merve ÖZDEMİR

PhDc, Gazi University

CHAPTER 1

COMPUTER-BASED SUSTAINABLE ATTENTION TEST FOR UNIVERSITY STUDENTS: A NORM STUDY

Şeyma ULUKÖK YILDIRIM¹
Duygu SÖNMEZ²

INTRODUCTION

Increasing performance expectations, intense information flow, demands for multitasking, and the constant presence of digital distractions pose significant challenges to learners' attention regulation skills in today's educational environments. Ensuring students can sustain their attention amid intense digital stimuli is one of the most fundamental challenges educators face, both in traditional classroom settings and in online learning (Wang et al., 2025).

Attention is a fundamental cognitive function that plays a critical role in the learning process. James (1980) defines attention as "the allocation of limited cognitive capacity resources." Attention, which is the gateway to learning, plays a decisive role in the processing, storage, and retrieval of information, especially in the performance of complex academic tasks (Barbachoux, 2025; Posner & Rothbart, 2007). Attention is a multidimensional concept that appears in different forms, such as selective, sustained, and divided attention (Driver, 2001; Wager et al., 2004). Selective attention is defined as a person's ability to concentrate on a specific situation or task while ignoring irrelevant stimuli at the same time (Wei et al., 2012). Divided attention, also known as multitasking, refers to an individual's ability to engage in multiple tasks simultaneously or focus on two or more sources of information at the same time (Goldstein, 2020). Sustained attention, as one form of attention, refers to an individual's capacity to focus on a specific task for an extended period by excluding distracting stimuli (Fisher, 2019; Slattery et al., 2022).

¹ Res. Ass.. Dr., Necmettin Erbakan University, Ahmet Keleşoğlu Faculty of Education, sulukok@erbakan.edu.tr, ORCID iD: 0000-0002-6476-9164

² Assoc. Prof. Dr., Hacettepe University, Faculty of Education, Department of Mathematics and Science Teaching, dsonmez@hacettepe.edu.tr, ORCID iD: 0000-0001-7821-6344

The fact that this study is limited to two state universities and that the age distribution of participants falls within a narrow range presents significant limitations to the research. Future studies which address these limitations and are based on larger samples and multiple methods could make essential contributions to sustainable attention research.

REFERENCES

- Avirame, K., Gshur, N., Komemi, R., & Lipskaya-Velikovsky, L. (2022). A multimodal approach for the ecological investigation of sustained attention: A pilot study. *Frontiers in Human Neuroscience*, 16, 971314. <https://doi.org/10.3389/fnhum.2022.971314>
- Barbachoux, C. (2025). The role of STEM and AI in enhancing attention skills in young students and the evaluations process. *International Journal of Education in Mathematics, Science, and Technology*, 13(4), 830–849. <https://doi.org/10.46328/ijemst.4879>
- Chan, R. C. (2001). A further study on the sustained attention response to task (SART): the effect of age, gender and education. *Brain Injury*, 15(9), 819–829.
- Driver, J. (2001). A selective review of selective attention research from the past century. *British Journal of Psychology*, 92, 53–78.
- Esterman, M., & Rothlein, D. (2019). Models of sustained attention. *Current Opinion in Psychology*, 29, 174–180.
- Fisher, A. V. (2019). Selective sustained attention: A developmental foundation for cognition. *Current Opinion in Psychology*, 29, 248–253. <https://doi.org/10.1016/j.copsyc.2019.06.002>
- Goldstein, E. B. (2020). *Cognitive psychology* (O. Gündüz, Trans.; 3rd ed.). Kakanüs Publishing.
- Huang, H., Li, R., & Zhang, J. (2023). A review of visual sustained attention: Neural mechanisms and computational models. *PeerJ*, 11, e15351.
- Ilgaz, H., Kokoç, M., Akçay, A., & Altun, A. (2019). A norm study of a computerized sustained attention test among university students. *Elementary Education Online*, 18(3), 1036–1045. <https://doi.org/10.17051/ilkononline.2019.610792>
- James, W. (1890). *The principles of psychology* (Vol. 1). Henry Holt
- Kokoç, M., Ilgaz, H., & Altun, A. (2020). Effects of sustained attention and video lecture types on learning performances. *Educational Technology Research and Development*, 68(6), 3015–3039. <https://doi.org/10.1007/s11423-020-09829-7>
- Öztoklu Durmuş, F. (2022). *The effect of an attention training program on selective and sustained attention of 60–72-month-old children* (Unpublished doctoral dissertation). Selçuk University, Konya.
- Posner, M. I., & Rothbart, M. K. (2007). *Educating the human brain*. American Psychological Association.
- Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. *Spatial Vision*, 3(3), 1–19.
- Scholl, B. J. (2009). What have we learned about attention from multiple object tracking (and vice versa)? In D. Dedrick & L. Trick (Eds.), *Computation, cognition, and Pylyshyn* (pp. 49–78). MIT Press.
- Slattery, E. J., O'Callaghan, E., Ryan, P., Fortune, D. G., & McAvinue, L. P. (2022). Popular interventions to enhance sustained attention in children and adolescents: A critical systematic review. *Neuroscience & Biobehavioral Reviews*, 137, 104633. <https://doi.org/10.1016/j.neubiorev.2022.104633>
- Steinmayr, R., Ziegler, M., & Träuble, B. (2010). Do intelligence and sustained attention interact in predicting academic achievement? *Learning and Individual Differences*, 20(1), 14–18. <https://doi.org/10.1016/j.lindif.2009.10.009>
- Tan, C. M., & Thamarapani, D. (2019). The impact of sustained attention on labor market outcomes:

- The case of Ghana. *Review of Development Economics*, 23(1), 155-171.
- Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. *NeuroImage*, 22, 1679–1693.
- Wang, M. R., Ying, P. X., & Kong, F. C. (2025). Neural correlates of media multitasking influencing switching but not sustained attention among college students: Evidence from a hierarchical Bayesian perspective. *Computers & Education*, 105418. <https://doi.org/10.1016/j.compedu.2025.105418>
- Wei, F. Y. F., Wang, Y. K., & Klausner, M. (2012). Rethinking college students' selfregulation and sustained attention: Does text messaging during class influence cognitive learning? *Communication Education*, 61(3), 185-204. <https://doi.org/10.1080/03634523.2012.672755>

CHAPTER 2

CROSS-CULTURAL VALIDATION OF THE SCIENCE MOTIVATION QUESTIONNAIRE II (SMQ-II) WITH TURKISH PRESERVICE TEACHERS ACROSS SCIENCE AND NON-SCIENCE MAJORS

Yüksel ALTUN ¹
Sevda SERİN ²

INTRODUCTION

Learners' motivation to engage with science is widely recognized as a key determinant of science achievement, persistence in STEM pathways, and the development of scientific literacy (Glynn et al., 2011; OECD, 2019). In contemporary societies shaped by rapid scientific and technological change, citizens require not only conceptual understanding but also the willingness and confidence to apply scientific reasoning when engaging with socio-scientific issues such as climate change, vaccination, public health, and sustainable energy (Yuenyong & Narjaikaew, 2009). Large-scale assessments such as PISA consistently demonstrate that motivational and affective factors are closely intertwined with students' performance in science and strongly predict future STEM aspirations (OECD, 2019). Low science motivation is associated with the avoidance of challenging tasks, shallow learning approaches, and attrition from science-related studies. In contrast, high motivation supports persistence, deeper processing, and an enduring interest in science (Kang & Keinonen, 2018). These concerns are particularly salient in Türkiye, where strengthening science literacy and increasing students' engagement with science remain explicit national education priorities.

Theoretically, motivation in science learning is grounded in several well-established frameworks. Self-Determination Theory (Deci & Ryan, 2000) highlights

¹ Prof. Dr., Gazi University, Gazi Faculty of Education, Department of Chemistry Education, yukseloz@gazi.edu.tr, ORCID ID: 0000-0002-5749-0528

² Teacher, Ministry of National Education, serinsevda@hotmail.com, ORCID iD: 0009-0003-1358-149X

By aligning closely with the structure and psychometric properties reported in SMQ-II studies from other countries, this adaptation positions Turkish preservice teachers within the broader international literature on science motivation. The instrument now offers researchers and teacher educators in Türkiye a theoretically grounded and empirically validated tool for assessing preservice teachers' motivation to learn science in a fine-grained way, distinguishing between intrinsic enjoyment, perceived career value, autonomy, self-efficacy, and grade-oriented goals. The generally high mean scores observed across subscales, together with relatively lower levels of perceived autonomy, suggest a motivational profile in which performance and intrinsic factors are both salient, but where fostering more autonomous regulation of science learning may be a significant target for teacher education programs.

At the same time, the present contribution is foundational rather than exhaustive. The present work establishes a solid measurement platform on which more substantive research can now be built—such as examining demographic differences in motivation, tracking trajectories across the teacher education continuum, and linking motivation to instructional beliefs, teaching practices, and early career outcomes. Future investigations that test measurement invariance across subgroups, apply longitudinal and item-response approaches, and connect SMQ-II profiles to program evaluation and classroom-level indicators will further strengthen the evidence base. In summary, the Turkish SMQ-II offers a high-quality, internationally comparable instrument that can support both local reform efforts in science teacher education and cross-cultural research on how to best support and sustain science motivation among future teachers.

REFERENCES

- Areepattamannil, S., Cairns, D., & Dickson, M. (2020). Teacher-directed versus inquiry-based science instruction: Investigating links to adolescents' science dispositions across 66 countries. *Journal of Research in Science Teaching*, 56(6), 771–790.
- Aeschlimann, B., Herzog, W., & Makarova, E. (2016). How to foster students' motivation in mathematics and science classes and promote students' STEM career choice: A study in Swiss high schools. *International Journal of Educational Research*, 79, 31–41.
- Ardura, I. R., & Pérez-Bitrián, A. (2018). The effect of motivation on the choice of chemistry in secondary school: Adaptation and validation of the Science Motivation Questionnaire II with Spanish students. *Chemistry Education Research and Practice*, 19(3), 905–918. <https://doi.org/10.1039/C8RP00098K>
- Bandura, A. (1997). *Self-efficacy: The exercise of control*. W. H. Freeman.
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. *Spine*, 25(24), 3186–3191. <https://doi.org/10.1097/00007632-200012150-00014>
- Black, A. E., & Deci, E. L. (2000). The effects of instructors' autonomy support and students' autonomous motivation on learning organic chemistry: A self-determination theory perspective.

- Science Education, 84(6), 740–756.
- Boone, W. J., Staver, J. R., & Yale, M. S. (2014). *Rasch analysis in the human sciences*. Springer.
- Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. *Journal of Research in Science Teaching*, 43(5), 485–499.
- Brown, T. A. (2015). *Confirmatory factor analysis for applied research* (2nd ed.). Guilford Press.
- Büyüköztürk, Ş. (2011). *Sosyal bilimler için veri analizi el kitabı* (15. baskı). Pegem.
- Çetin-Dindar, A., & Geban, Ö. (2015). Fen Bilimleri Motivasyon Ölçeğinin Türkçeye ve kimyaya uyaranması: Geçerlilik çalışması. *Pegem Eğitim ve Öğretim Dergisi*, 5(1), 15–34. <https://doi.org/10.14527/pegegog.2015.002>
- Chen, J. A., & Usher, E. L. (2013). Profiles of the sources of science self-efficacy. *Learning and Individual Differences*, 24, 11–21. <https://doi.org/10.1016/j.lindif.2012.11.002>
- Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01
- DeVellis, R. F. (2017). *Scale development: Theory and applications* (4th ed.). Sage.
- Dong, Y., Wang, Y., & Wang, J. (2020). Validation of a Chinese version of the Science Motivation Questionnaire II. *Journal of Baltic Science Education*, 19(5), 716–729. <https://doi.org/10.33225/jbse/20.19.716>
- Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. *Annual Review of Psychology*, 53, 109–132.
- Eccles, J. S., & Wigfield, A. (2020). From expectancy–value theory to situated expectancy–value theory: A developmental, social cognitive, and sociocultural perspective. *Contemporary Educational Psychology*, 61, 101859. <https://doi.org/10.1016/j.cedpsych.2020.101859>
- Field, A. (2013). *Discovering statistics using IBM SPSS Statistics* (4th ed.). Sage.
- Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science Motivation Questionnaire II: Validation with science majors and non-science majors. *Journal of Research in Science Teaching*, 48(10), 1159–1176. <https://doi.org/10.1002/tea.20442>
- Hambleton, R. K., Merenda, P. F., & Spielberger, C. D. (Eds.). (2005). *Adapting educational and psychological tests for cross-cultural assessment*. Lawrence Erlbaum.
- Hambleton, R. K., & Zenisky, A. L. (2011). Translating and adapting tests for cross-cultural assessments. In D. Matsumoto & F. J. R. van de Vijver (Eds.), *Cross-cultural research methods in psychology* (pp. 46–70). Cambridge University Press.
- Hu, L.T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1), 1–55.
- International Test Commission. (2018). The ITC Guidelines for Translating and Adapting Tests (Second Edition). *International Journal of Testing*, 18(2), 101–134.
- Kaiser, H. F. (1974). An index of factorial simplicity. *Psychometrika*, 39(1), 31–36.
- Kang, J., & Keinonen, T. (2017). The effect of inquiry-based science teaching on attitudes, self-efficacy, and science process skills. *Research in Science Education*, 47, 805–828. <https://doi.org/10.1007/s11165-016-9532-3>
- Kang, J., & Keinonen, T. (2018). The effect of student-centered approaches on students' motivation in science. *Science Education International*, 29(2), 90–99
- Kline, R. B. (2016). *Principles and practice of structural equation modeling* (4th ed.). Guilford Press.
- Klassen, R. M., Frenzel, A. C., & Perry, N. E. (2012). Teachers' relatedness with students: An underemphasized component of teachers' basic psychological needs. *Journal of Educational Psychology*, 104(1), 150–165.
- Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., Bouter, L. M., & de Vet, H. C. W. (2018). COSMIN methodology for systematic reviews of patient-reported outcome measures (PROMs). *Quality of Life Research*, 27(5), 1147–1157.
- OECD. (2019). *PISA 2018 results (Volume II): Where all students can succeed*. OECD Publishing. <https://doi.org/10.1787/b5fd1b8f-en>
- Osborne, J., & Dillon, J. (2008). *Science education in Europe: Critical reflections*. The Nuffield Foun-

dation.

- Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. *Journal of Educational Psychology*, 95(4), 667–686.
- Polit, D. F., & Beck, C. T. (2021). *Nursing research: Generating and assessing evidence for nursing practice* (11th ed.). Wolters Kluwer.
- Potvin, P., & Hasni, A. (2014). Interest, motivation, and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. *Studies in Science Education*, 50(1), 85–129.
- Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. *Developmental Review*, 41, 71–90.
- Ryan, R. M., & Deci, E. L. (2020). *Self-determination theory: Basic psychological needs in motivation, development, and wellness*. Guilford Press.
- Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: Adaptation and validation of the Science Motivation Questionnaire II with Greek secondary school students. *Chemistry Education Research and Practice*, 16(2), 237–250. <https://doi.org/10.1039/C4RP00196F>
- Schumm, M. F., & Bogner, F. X. (2016). Measuring adolescent science motivation: A mixed-methods study. *International Journal of Science Education*, 38(3), 434–449. <https://doi.org/10.1080/09500693.2016.1147659>
- Tabachnick, B. G., & Fidell, L. S. (2019). *Using multivariate statistics* (7th ed.). Pearson.
- Terwee, C. B., Prinsen, C. A. C., Chiarotto, A., Westerman, M. J., Patrick, D. L., Alonso, J., Bouter, L. M., de Vet, H. C. W., & Mokkink, L. B. (2018). COSMIN methodology for evaluating the content validity of patient-reported outcome measures: A Delphi study. *Quality of Life Research*, 27(5), 1159–1170.
- Toma, R. B., Costa-Lobo, C., & Araújo, A. M. (2023). Cross-cultural adaptation and validation of the Science Motivation Questionnaire II for Brazilian students. *Research in Science Education*. Advance online publication. <https://doi.org/10.1007/s11165-022-10065-3>
- Tosun, C. (2013). Adaptation of Chemistry Motivation Questionnaire II to Turkish: A validity and reliability study. *Erzincan Üniversitesi Eğitim Fakültesi Dergisi*, 15(1), 173–202.
- Vedder-Weiss, D., & Fortus, D. (2018). Teachers' mastery goals: Using a self-report survey to study the relations between teaching practices and students' motivation for science learning. *Research in Science Education*, 48(1), 181–206.
- Wigfield, A., & Eccles, J. S. (2020). Thirty-five years of research on students' subjective task values and motivation: A look back and a look forward. In A. J. Elliot (Ed.), *Advances in motivation science* (Vol. 7, pp. 161–198). Elsevier.
- Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. *The Counseling Psychologist*, 34(6), 806–838.
- Yamamura, E., & Takehira, H. (2017). Adaptation of the Science Motivation Questionnaire II for a Japanese sample: Its predictive validity for science grades and track choice. *Journal of Science Education in Japan*, 41(4), 349–360. (In Japanese, with English abstract.)
- Yuenyong, C., & Narjaikae, P. (2009). Scientific literacy and Thailand science education. *International Journal of Environmental and Science Education*, 4(3), 335–349.
- Zhang, J., & Zhou, Q. (2023). Chinese Chemistry Motivation Questionnaire II: Adaptation and validation of the Science Motivation Questionnaire II in high school students. *Chemistry Education Research and Practice*, 24(1), 369–383. <https://doi.org/10.1039/D2RP00243D>

CHAPTER 3

THE ROLE OF ENVIRONMENTAL EDUCATION IN SUSTAINABLE DEVELOPMENT: NEW APPROACHES AND GLOBAL TRENDS

Beril Salman AKIN ¹

INTRODUCTION

Sustainable development is a normative framework that seeks to advance economic growth, social inclusion, and environmental integrity simultaneously while safeguarding intergenerational equity. Its contemporary definition and governance dimensions are grounded in the Brundtland Report (WCED, 1987). This framework calls for comprehensive transformations spanning resource use, investment priorities, and institutional arrangements; accordingly, approaches limited to “information provision” are no longer sufficient. Instead, education—particularly Education for Sustainable Development (ESD)—is positioned as a bridge between individual behavioral change and societal transformation (UNESCO, 2020).

The global policy agenda has consolidated ESD’s strategic status. Within the SDGs, Target 4.7 aims to ensure that all learners acquire the knowledge, skills, and values necessary for sustainable development and global citizenship. Progress toward this target is monitored through Indicator 4.7.1 (UN DESA; UNESCO, 2025). The 2021 Berlin Declaration further identifies ESD as an enabler of all 17 SDGs and calls for systemic transformation (UNESCO, 2021). At the EU level, the 2022 Council Recommendation on “Learning for the Green Transition and Sustainable Development” provides a roadmap for mainstreaming green competences across all stages of education and training (Council of the EU, 2022). UNESCO’s *ESD for 2030 Roadmap* and the Greening Education Partnership offer

¹ Prof. Dr., Gazi University, Faculty of Gazi Education, Department of Biology Education, bsakin@gazi.edu.tr, ORCID iD: 0000-0003-0706-8764

EE is the cornerstone of a sustainable and equitable future, connecting individual consciousness with collective transformation. It bridges the gap between scientific knowledge and ethical responsibility, policy and practice, and local action and global sustainability goals. In this sense, environmental education is not merely an academic or curricular concern but a societal imperative—the foundation upon which a regenerative, inclusive, and climate-resilient future can be built.

REFERENCES

- Aydın, A., & Kara, B. (2020). TÜBİTAK 4004 ve 4005 projelerinin çevre eğitimi açısından değerlendirilmesi. *Fen Bilimleri Eğitimi Dergisi*, 15(2), 145–160.
- Bybee, R. (2013). *The case for STEM education: Challenges and opportunities*. Arlington, VA: NSTA Press.
- Carson, R. (1962). *Silent spring*. Boston: Houghton Mifflin.
- Council of the European Union. (2022). *Council recommendation on learning for the green transition and sustainable development (2022/C 243/01)*. Brussels: European Union.
- Çelik, S., & Tuncer, T. (2021). Türkiye'de çevre eğitiminin uygulama sorunları ve öğretmen yeterlikleri. *Eğitim ve Uygulama Araştırmaları Dergisi*, 7(1), 52–70.
- Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB). (2011). *Ulusal çevre stratejisi ve eylem planı (UÇEP)*. Ankara.
- Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB). (2022). *Türkiye iklim değişikliği stratejisi (2023–2030)*. Ankara.
- Çevre, Şehircilik ve İklim Değişikliği Bakanlığı (ÇŞİDB). (2023). *Okullarda sıfır atık projesi raporu*. Ankara.
- Davis, J., & Elliott, S. (2019). *Research in early childhood education for sustainability*. Routledge.
- Demircioğlu, E. (2020). Türkiye'de sürdürülebilir kalkınma hedefleri kapsamında çevre eğitiminin değerlendirilmesi. *Eğitim ve Bilim*, 45(202), 87–104.
- European Commission. (2019). *The European Green Deal*. Brussels.
- Hopkins, C., & McKeown, R. (2005). *Guidelines and recommendations for reorienting teacher education to address sustainability*. UNESCO.
- Huckle, J., & Sterling, S. (1996). *Education for sustainability*. London: Earthscan.
- IPCC. (2023). *AR6 synthesis report: Summary for policymakers*. Geneva: Intergovernmental Panel on Climate Change.
- IUCN. (1980). *World conservation strategy: Living resource conservation for sustainable development*. Gland, Switzerland.
- Karatekin, K. (2019). Türkiye'de çevre eğitimi ve öğretmen adaylarının çevre okuryazarlığı. *Eğitim ve Bilim*, 44(198), 123–137.
- Keleş, R., Hamamcı, C., & Çoban, A. (2021). *Çevre politikası*. Ankara: İmge Kitabevi.
- Kocagil, İ. (2022). Türkiye'de çevre eğitiminde öğretmen yeterlilikleri ve uygulama sorunları. *Milli Eğitim Dergisi*, 51(1), 210–232.
- Kolb, D. A. (1984). *Experiential learning: Experience as the source of learning and development*. Englewood Cliffs, NJ: Prentice-Hall.
- MEB. (2018). *2023 eğitim vizyonu*. Ankara: Milli Eğitim Bakanlığı.
- MEB. (2023). *Çevre eğitimi ve iklim değişikliği dersi öğretim programı*. Ankara: Milli Eğitim Bakanlığı.
- MEB. (2024). *Türkiye Yüzyılı Maarif Modeli*. Ankara: Milli Eğitim Bakanlığı.
- Mezirow, J. (2003). Transformative learning as discourse. *Journal of Transformative Education*, 1(1), 58–63.
- Minocha, S., Hardy, C., & Pritchard, C. (2022). Virtual reality in environmental education: A systematic review. *Environmental Education Research*, 28(4), 505–523.

- Minocha, S., Tilling, S., & Tudor, A. D. (2022). Virtual reality in environmental education: Transforming awareness into action. *Computers & Education*, 184, 104516.
- OECD. (2021). Green skills and competences for a sustainable future. Paris: OECD Publishing.
- OECD. (2023). Education for climate action: Fostering skills for green transitions. Paris: OECD Publishing.
- Orr, D. (1994). Earth in mind: On education, environment, and the human prospect. Island Press.
- Republic of Türkiye, Ministry of Environment, Urbanization and Climate Change (MoEUCC). (2024). Türkiye long-term climate strategy (LTS). UNFCCC Submission.
- Rickinson, M., Dillon, J., Teamey, K., Morris, M., & Choi, M. Y. (2004). A review of research on outdoor learning. Shrewsbury: Field Studies Council.
- Rickinson, M., Hall, M., & Dillon, J. (2019). Environmental education research handbook. Routledge.
- Sterling, S. (2010). Transformative learning and sustainability: Sketching the conceptual ground. *Learning and Teaching in Higher Education*, 5, 17–33.
- Sterling, S. (2021). Educating for the future: Towards ecological and social renewal. Routledge.
- Suárez, C., & Serrano, A. (2021). Using virtual laboratories in environmental sciences: A review of best practices. *International Journal of Environmental Education*, 37(2), 95–110.
- T.C. Cumhurbaşkanlığı. (2019). On birinci kalkınma planı (2019–2023). Ankara.
- T.C. Cumhurbaşkanlığı. (2024). On ikinci kalkınma planı (2024–2028). Ankara.
- TEMA Vakfı. (2022). Eğitim programları raporu. İstanbul.
- Tilbury, D. (1995). Environmental education for sustainability: Defining the new focus of environmental education in the 1990s. *Environmental Education Research*, 1(2), 195–212.
- Tilbury, D. (2011). Education for sustainable development: An expert review of processes and learning. Paris: UNESCO.
- TÜBİTAK. (2023). Doğa eğitimi ve bilim okulları programı (4004–4005). Ankara.
- UN (United Nations). (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations.
- UN DESA. (N.D.). Sustainable Development Goal 4: Quality education. United Nations Department of Economic and Social Affairs.
- UNCED (United Nations Conference on Environment and Development). (1992). Agenda 21: Programme of action for sustainable development. Rio de Janeiro.
- UNESCO. (1972). The educational challenge of the environmental crisis. Paris.
- UNESCO. (1975). Belgrade Charter on Environmental Education. Paris.
- UNESCO-UNEP. (1978). Tbilisi Declaration on Environmental Education. Paris.
- UNESCO. (2002). Johannesburg plan of implementation. Paris.
- UNESCO. (2005). United Nations Decade of Education for Sustainable Development (2005–2014): International implementation scheme. Paris.
- UNESCO. (2014). Shaping the Future We Want: UN Decade of Education for Sustainable Development (Final Report). Paris.
- UNESCO. (2015). Rethinking education: Towards a global common good? Paris.
- UNESCO. (2020). Education for sustainable development: A roadmap. Paris.
- UNESCO. (2021). Berlin Declaration on Education for Sustainable Development. Paris.
- UNESCO. (2021). Reimagining our futures together: A new social contract for education. Paris.
- UNESCO. (2023). Greening education partnership: Guiding framework. Paris.
- UNESCO. (2025). Education for sustainable development — What you need to know (SDG 4.7.1 monitoring). Paris.
- Wals, A. E. J. (2010). Mirroring, gestaltswitching, and transformative social learning: Stepping stones for developing sustainability competence. *International Journal of Sustainability in Higher Education*, 11(4), 380–390.
- Wals, A. E. J. (2020). Sustainability-oriented learning in the digital age. *Journal of Cleaner Production*, 274, 122–134.
- WCED (World Commission on Environment and Development). (1987). Our common future. Ox-

- ford: Oxford University Press.
- WWF-Türkiye. (2021). Yeşil okullar programı raporu. İstanbul.
- Yakman, G. (2019). STEAM education: An overview of creating a model of integrative education. *Educational Sciences*, 9(3), 13–23.
- Yakman, G., & Lee, H. (2012). Exploring the exemplary STEAM education in the U.S. as a practical educational framework for Korea. *Journal of the Korean Association for Science Education*, 32(6), 1072–1086.
- Yükseköğretim Kurulu (YÖK). (2023). Yükseköğretimde sürdürülebilirlik raporlama rehberi. Ankara.

CHAPTER 4

EVALUATION OF PROSPECTIVE BIOLOGY TEACHERS' PEDAGOGICAL CONTENT KNOWLEDGE ON AIR POLLUTION

Zehra YILDIRIM¹
Beril Salman AKIN²

INTRODUCTION

Developments in the 21st century necessitate the development of qualified human resources that can adapt to changing living conditions and evolving needs. It is essential for teachers who will train the human resources needed by society to continually update their skills according to the demands of the age (Yilmaz, 2007). Parallel to the developments in science and technology, the competencies that teachers need to possess are diversifying and increasing daily. Teacher competencies are a topic that is being researched nationally and internationally within the scope of the theme of training 21st-century teachers (Şışman, 2009). In the Tenth Development Plan, prepared in line with Turkey's 2023 goals, it is emphasized that "teacher training and development systems should be restructured in a way that is based on competencies."

In Turkey, the first official studies on teacher competencies began in 1998 with the "YÖK/World Bank National Education Development Project, Pre-Service Teacher Education". The Ministry of National Education prepared the "Teacher Competencies" document in line with the project's results and implemented it in 2002. In this document, the competencies that teachers should possess are grouped under three headings: "Education-Teaching Competencies", "General Cultural Knowledge and Skills", and "Special Field Knowledge and skills". In the

¹ Master Student, Department of Biology Education, Faculty of Gazi Education,
zehra.yildirim@meb.gov.tr, ORCID iD: 0000-0001-5078-4956

² Prof. Dr., Gazi University, Faculty of Gazi Education, Department of Biology Education,
bsakin@gazi.edu.tr, ORCID iD: 0000-0003-0706-8764

- Research on PCK has so far only been conducted on teachers or prospective teachers. Pedagogical content knowledge of faculty members teaching in education faculties can also be investigated.
- Pedagogical content knowledge of prospective teachers can be investigated in the nature protection and sustainability for development.

REFERENCES

- Alev, N., & Karal, İ. S. (2013). Determination of pedagogical content knowledge of physics teachers on electricity and magnetism. *Mersin University Journal of the Faculty of Education*, 9(2), 88–108.
- Arsal, Z. (2010). Misconceptions of primary school teacher candidates regarding the greenhouse effect. *Elementary Education Online*, 9(1), 229–240.
- Boyes, E., Chambers, W., & Stanisstreet, M. (1995). Students' perceptions of global environmental issues. *International Journal of Science Education*, 17(6), 685–699.
- Canbazoglu, S., Demirelli, H., & Kavak, N. (2010). Investigation of the relationship between pre-service science teachers' subject matter knowledge and pedagogical content knowledge regarding the particulate nature of matter. *İ.O.O.*, 9(1), 275–291.
- Creswell, J. W. (2013). Qualitative inquiry and research design: choosing among five approaches. United States of America: SAGE Publications.
- Çimer, S. O., Çimer, A., & Ursavaş, N. (2011). Student teachers' concepts about global warming and changes in their conceptions during pre-service education. *Educational Research and Reviews*, 6(8), 592–597.
- Cochran, K. F., DeRuiter, J. A. and King, R. A. (1993). Pedagogical Content Knowing: An integrative model for teacher preparation. *Journal of Teacher Education*, 44, 263–272.
- Daskolia, M., Flogaitis, E., & Papageorgiou, E. (2006). Kindergarten teachers' conceptual framework on ozone layer depletion. *Journal of Science Education and Technology*, 15, 168–178.
- EARGED. (2006). General competencies for teaching profession. Ministry of National Education.
- Erdoğan, S. (2020). Energy, Environment, and Greenhouse Gases. Çankırı Karatekin University Journal of the Faculty of Economics and Administrative Sciences, 10(1), 277–303.
- Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. Aldine.
- Gerçek, C. & Soran, H. (2005). Determining of teachers' use of experimental methods in biology teaching. *Hacettepe University Journal of Education*, 29(29), 95–102.
- Groves, F. H., & Pugh, A. (1999). Elementary pre-service teacher perceptions of the greenhouse effect. *Journal of Science Education and Technology*, 8(1), 75–82.
- Güngördü, N., Yalçın Çelik, A., & Kılıç, Z. (2017). Students' Misconceptions about the Ozone Layer. *International Electronic Journal of Environmental Education*, 7(1), 1–16.
- Karataş, Z. (2017). Paradigm shift in social science research. *Turkish Journal of Social Service Research*, 1(1).
- Kabakçı Yurdakul, I. & Odabaşı, H.F. (2013). Instructional technologies and material design based on technopedagogical education. Ankara: Anı Publishing.
- Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers' representation of PCK. *International Journal of Science Education*, 30(10), 1343–1363.
- Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.
- Magnusson, S., Krajcik, J., & Borko, H. (1999). In J. Gess-Newsome & N. Lederman (Eds.), *Examining PCK* (pp. 95–132). Kluwer.
- MEB. (2017). General competencies of the teaching profession. Ministry of National Education.
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Sage.
- Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis. *International Journal of Qualitative Methods*, 16(1), 1–13.

- Öner, D. (2010). Is teacher knowledge a special kind of knowledge? A theoretical view of the knowledge required for teaching. *Boğaziçi University Journal of Education*, 27(2), 23-32.
- Özler, S., & Akdağ, E. (2011). Acid rain. *Journal of Science and Technology*, 518, 64–68.
- Özyalçın Oskay, Ö., Temel, S., Dinçol Özgür, S. and Erdem, E. (2012). Determination of pre-service chemistry teachers cognitive structures as relevant to their conceptual understandings and misconceptions of greenhouse gases and their effects. *Eurasian Journal of Physics and Chemistry Education*, 4, 30-55.
- Pabuçcu, A. (2016). Examining the knowledge of prospective teachers about acid rain. *Abant İzzet Baysal University Journal of Education Faculty*, 16(3), 961–976.
- Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of PCK. *Research in Science Education*, 38, 261–284.
- Shenton, A. K. (2004). Strategies for ensuring trustworthiness. *Education for Information*, 22(2), 63–75.
- Şişman, M. (2009). Teacher competencies: A modern discourse and rhetoric. *İnönü University Faculty of Education Journal*, 10(3), 63-82.
- Shulman, L. S. (1986). Knowledge growth in teaching. *Educational Researcher*, 15(2), 4–14.
- Shulman, L. S. (1987). Knowledge and teaching. *Harvard Educational Review*, 57(1), 1–22.
- Summers, M., Kruger, C., Childs, A., & Mant, J. (2000). Environmental issues. *Environmental Education Research*, 6, 293–312.
- Taşkaya, S. M., & Sürmeli, H. (2014). Evaluation of teaching methods. *Gaziantep University Journal of Social Sciences*, 13(1), 169–181.
- Tekkaya, C., & Kılıç, D. S. (2012). PCK regarding evolution. *Hacettepe University Journal of Education*, 42(42), 406–417.
- Turnüklü, T. (2000). Interview technique. *Kuram ve Uygulamada Eğitim Yönetimi*, 24, 543–559.
- Uşak, M. (2005). Dissertation. Prospective science teacher's pedagogical content knowledge on flowering plants. PhD Thesis. Ankara: Gazi University Institute of Educational Sciences.
- Uşak, M. (2009). Science and technology teacher pedagogical content knowledge of prospective teachers on the subject of cells. *Educational Sciences in Theory and Practice*, 9, 2013-2046.
- Uştu, H., Mentiş Taş, A., & Sever, B. (2016). Professional development. *Electronic Journal*, 4(1).
- Yağbasan, R., & Gülcücek, Ç. (2003). Identification of the characteristic of misconceptions in science teaching. *Pamukkale University Journal of Education*, 13, 102–120.
- Yıldırım, A., & Şimşek, H. (2008). Qualitative research methods. (6th ed.). Ankara: Seçkin Publishing.
- Yılmaz, M. (2007). Technology education. *Gazi University Journal*, 27(1), 155–167.
- Zencirci, S., & Işıkli, B. (2017). Air pollution. *Eskişehir Public Health Journal*, 2(2), 24–36.

CHAPTER 5

MEDIA LITERACY AS A 21ST CENTURY SKILL IN FLUX: HOW PROSPECTIVE TEACHERS DEAL WITH DISABILITY, RACISM, AND SEXISM

Tunay TAŞ¹
Ayça ASLAN²

INTRODUCTION: WHAT IS (CRITICAL) MEDIA LITERACY?

Media literacy is generally defined as the competency to access, analyse, evaluate, and create different forms of media (Aufderheide, 1997; Livingstone, 2004). Early definitions focused on understanding modern ways of communication as a basic life skill for the Information Age (Schwarz, 2001). This includes not only the technical skills, such as finding and decoding messages across print, visual, audio, and digital media, but also higher-order critical thinking. A media-literate individual is an active participant in a media-saturated environment rather than a passive consumer. As Thoman and Jolls (2005) also argue, media literacy is the ability to choose, select, challenge, question, and be conscious about what's going on around us rather than being passive and vulnerable.

Media literacy in the 21st century is inseparably linked to digital literacy. Digital literacy has been defined as the competency to find, evaluate, create, and communicate information using digital technologies by combining technical skill with critical thinking. As media have moved largely online, media literacy has grown to include digital competencies and practices. Chen and colleagues (2025) report that practitioners often use the terms 'digital literacy' and 'media and information literacy' interchangeably, highlighting how the concepts converge in contemporary education. This development reflects an acknowledgment that critical inter-

¹ Asst. Prof. Dr., Yozgat Bozok University, Faculty of Education, Department of Foreign Languages Teaching, tunaytas258@gmail.com, ORCID iD: 0000-0002-6346-9936

² Asst. Prof. Dr., Yozgat Bozok University, Faculty of Education, Department of Foreign Languages Teaching ayca.aslan@yobu.edu.tr, ORCID iD: 0000-0003-0897-1066

bracing contention entails preparing 21st-century teachers who are courageous in defending informed perspectives and compassionate in amplifying marginalised voices. This opens up a valuable pedagogical space for dialogic teaching, in which teachers and students are active participants in the construction of knowledge in an egalitarian way, creating deeper learning opportunities (Manalo, 2019). Ultimately, this holistic competence is also linked to social action. Prospective teachers who can confidently tackle racism, sexism, or ableism are more likely to become the agents of change that critical literacy seeks to foster.

REFERENCES

- Akkuş, G. B., & Uysal, H. H. (2024). Empowering tomorrow's educators: Critical literacy journeys of pre-service English teachers. *Journal of Pedagogical Research*, 8(4), 235–254. <https://doi.org/10.33902/JPR.202429986>
- Aufderheide, P. (1997). media literacy: From a report of the national leadership conference on media literacy. In *Media literacy around the world*. Routledge.
- Aydemir, S., & Demirkan, Ö. (2018). Gender-aware media literacy training: A needs analysis study for prospective teachers. *Educational Policy Analysis and Strategic Research*, 13(1), 6–30. <https://doi.org/10.29329/epasr.2018.137.1>
- Chen, S., Salleh, S. M., & Salleh, M. A. M. (2025). Media and information literacy among pre-service teachers: A systematic review of key trends and gaps (2013–2024). *International Journal of Information Management Data Insights*, 5(2), 100348. <https://doi.org/10.1016/j.jjimei.2025.100348>
- Comber, B. (2015). Critical literacy and social justice. *Journal of Adolescent & Adult Literacy*, 58(5), 362–367. <https://doi.org/10.1002/jaal.370>
- Degand, D. (2020). Introducing critical race media literacy in an undergraduate education course about technology and arts-based inquiry. *International Journal of Multicultural Education*, 22(3), 96–117.
- Domine, V. (2011). Building 21st-century teachers: An intentional pedagogy of media literacy education. *Action in Teacher Education*, 33(2), 194–205. <https://doi.org/10.1080/01626620.2011.569457>
- Erdem, C., & Eristi, B. (2018). Paving the way for media literacy instruction in preservice teacher education: Prospective teachers' levels of media literacy skills. *International Journal of Instruction*, 11(4), 795–810.
- Flores-Koulish, S. A., Deal, D., Losinger, J., McCarthy, K., & Rosebrugh, E. (2011). After the media literacy course: Three early childhood teachers look back. *Action in Teacher Education*, 33(2), 127–143. <https://doi.org/10.1080/01626620.2011.569308>
- Harpur, P. (2009). Sexism and racism, why not ableism?: Calling for a cultural shift in the approach to disability discrimination. *Alternative Law Journal*, 34(3), 163–167. <https://doi.org/10.1177/1037969X0903400304>
- Hawley, T. S., Crowe, A. R., & Mooney, E. (2016). Visualizing social justice: using controversial images in social studies classrooms. *The Clearing House: A Journal of Educational Strategies, Issues and Ideas*, 89(3), 85–90. <https://doi.org/10.1080/00098655.2016.1181046>
- Herro, D., Visser, R., & Qian, M. (2021). Teacher educators' perspectives and practices towards the Technology Education Technology Competencies (TETCs). *Technology, Pedagogy and Education*, 30(5), 623–641. <https://doi.org/10.1080/1475939X.2021.1970620>
- Hobbs, R., & Tuzel, S. (2017). Teacher motivations for digital and media literacy: An examination of Turkish educators. *British Journal of Educational Technology*, 48(1), 7–22. <https://doi.org/10.1111/bjet.12326>
- Holyoke, E., & Ries, E. (2024). "I didn't think about that perspective": Preservice teachers' (dis)com-

- fort in applying critical literacy and race-visible discourse. *Literacy Research and Instruction*, 63(3), 217–237. <https://doi.org/10.1080/19388071.2023.2208184>
- Hopkins-Doyle, A., Cameron, L., Spinner, L., Dibb, B., Kočiš, A., Brett, R., & Tenenbaum, H. R. (2025). Knowledge and comfort predict teaching about sexism in school teachers. *Social Psychology of Education*, 28(1), 102. <https://doi.org/10.1007/s11218-025-10049-1>
- Houston, E. (2019). 'Risky' representation: The portrayal of women with mobility impairment in twenty-first-century advertising. *Disability & Society*, 34(5), 704–725. <https://doi.org/10.1080/09687599.2019.1576505>
- Joanou, J. P. (2017). Examining the world around us: Critical media literacy in teacher education. *Multicultural Perspectives*, 19(1), 40–46. <https://doi.org/10.1080/15210960.2017.1267514>
- Kearney, S., Brittain, I., & Kipnis, E. (2019). "Superdisabilities" vs "disabilities"? Theorizing the role of ableism in (mis)representational mythology of disability in the marketplace. *Consumption Markets & Culture*, 22(5–6), 545–567. <https://doi.org/10.1080/10253866.2018.1562701>
- Kellner, D., & Share, J. (2005). Toward critical media literacy: Core concepts, debates, organizations, and policy. *Discourse: Studies in the Cultural Politics of Education*, 26(3), 369–386. <https://doi.org/10.1080/01596300500200169>
- Kellner, D., & Share, J. (2007). Critical media literacy: Crucial policy choices for a twenty-first-century democracy. *Policy Futures in Education*, 5(1), 59–69. <https://doi.org/10.2304/pfie.2007.5.1.59>
- Livingstone, S. (2004). What is media literacy? *Intermedia*, 32(3), 18–20.
- Manalo, E. (Ed.). (2019). *Deeper learning, dialogic learning, and critical thinking: Research-based strategies for the classroom*. Routledge. <https://doi.org/10.4324/9780429323058>
- Mkhize, G. (2015). Problematising rhetorical representations of individuals with disability – disabled or living with disability? *Agenda*, 29(2), 133–140. <https://doi.org/10.1080/10130950.2015.1040692>
- Nagle, J. (2018). Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: A review of the literature. *Teaching and Teacher Education*, 76, 86–94. <https://doi.org/10.1016/j.tate.2018.08.014>
- Ng, R., Indran, N., & Liu, L. (2024). Social media discourse on ageism, sexism, and racism: Analysis of 150 million tweets over 15 years. *Journal of the American Geriatrics Society*, 72(10), 3149–3155. <https://doi.org/10.1111/jgs.19047>
- Pace, J. L. (2019). Contained risk-taking: Preparing preservice teachers to teach controversial issues in three countries. *Theory & Research in Social Education*, 47(2), 228–260. <https://doi.org/10.1080/00933104.2019.1595240>
- Robertson, L., & Scheidler-Benns, J. (2016). Critical media literacy as a transformative pedagogy. *Literacy Information and Computer Education Journal*, 7(1), 2247–2253. <https://doi.org/10.20533/lcej.2040.2589.2016.0297>
- Schwarz, G. (2001). Literacy expanded: The role of media literacy in teacher education. *Teacher Education Quarterly*, 28(2), 111–119.
- Stein, L., & Prewett, A. (2009). Media literacy education in the social studies: Teacher perceptions and curricular challenges. *Teacher Education Quarterly*, 36(1), 131–148.
- Thoman, E., & Jolls, T. (2005). Media literacy education: Lessons from the center for media literacy. *Teachers College Record*, 107(13), 180–205. <https://doi.org/10.1177/016146810810701309>
- Whatley, R., Banda, R. M., & Bryan, N. (2020). Challenging traditional conceptions of english curricula & pedagogy: A review of literature on teaching critical literacy through political music. *Changing English*, 27(4), 431–445. <https://doi.org/10.1080/1358684X.2020.1747395>
- Zhang, H., Zhu, C., Sang, G., & Questier, F. (2024). Effects of digital media literacy course on primary school students' digital media literacy: An experimental study. *International Journal of Technology and Design Education*, 34(1), 1–17. <https://doi.org/10.1007/s10798-023-09824-y>

CHAPTER 6

A DESIGN-BASED RESEARCH APPROACH TO TEACHING ANTIBIOTIC RESISTANCE THROUGH A WORKSHOP WITH PRESERVICE TEACHERS

Merve ÖZDEMİR¹
Semra MİRİCİ²

INTRODUCTION

The discovery of antibiotics has brought a new dimension to the treatment of infectious diseases. However, the incorrect, incomplete, and indiscriminate use of antibiotics has led to the development of resistance in bacteria. This situation has rapidly evolved into a growing global public health threat (Davies & Davies, 2010). Data published by the World Health Organization in 2020 identify antibiotic resistance as one of the most serious public health problems of the 21st century. Antimicrobial resistance is considered a global crisis not only because of its impact on health, but also due to the economic burden it creates, increased healthcare system costs, and the social risks it poses to societies (World Health Organization, 2020; O'Neill, 2016).

Antibiotic resistance-related global crisis can be addressed most effectively through education. Although there are international-level initiatives for teaching antibiotic resistance, many of these involve high costs, logistical challenges, and experiments that pose safety risks (Ventola, 2015; Osborne, 2014). Similarly, in Türkiye, instruction on antibiotic resistance remains largely theoretical, highlighting the need for practical, low-cost, and effective instructional models (Özdemir & Bakırıcı, 2021).

In biology education, the topic of antibiotic resistance has significant potential for developing scientific process skills and for increasing social awareness and

¹ PhDc, Gazi University, mervecam93@gmail.com , ORCID iD: 0009-0008-0199-7267

² Prof. Dr., Gazi University, Gazi Faculty of Education, Department of Mathematics and Science Teaching, semramirici@gmail.com, ORCID iD: 0000-0003-4999-8628

In conclusion, this study offers an innovative and applicable approach to teaching a contemporary and critical topic such as antibiotic resistance in the science education literature. Future research is recommended to focus on implementing the activity across different age groups, in diverse socio-cultural contexts, and within longitudinal designs aimed at examining long-term learning outcomes.

Furthermore, supporting the activity with digital simulations or integrating it into hybrid learning environments may provide new opportunities for enhancing biotechnology literacy (Abd-El-Khalick et al., 2015).

REFERENCES

- Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. L. (2015). Science education and cultural contexts: The role of teaching practices. *Science Education*, 99(1), 1–31. <https://doi.org/10.1002/sce.21141>
- Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? *Educational Researcher*, 41(1), 16–25. <https://doi.org/10.3102/0013189X11428813>
- Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. *The Journal of the Learning Sciences*, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1
- Çelik, R., & Kılıç, D. (2019). Students' conceptual misconceptions about antibiotic use and resistance. *Education and Science*, 44(197), 215–232. <https://doi.org/10.15390/EB.2019.12345>
- Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. *Educational Researcher*, 32(1), 9–13. <https://doi.org/10.3102/0013189X032001009>
- Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Learning Policy Institute.
- Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. *Microbiology and Molecular Biology Reviews*, 74(3), 417–433. <https://doi.org/10.1128/MMBR.00016-10>
- Dawson, V., & Venville, G. (2010). Teaching strategies for developing students' socio-scientific reasoning. *Research in Science Education*, 40(2), 133–148. <https://doi.org/10.1007/s11165-008-9108-6>
- Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. *Educational Researcher*, 32 (1), 5–8. <https://doi.org/10.3102/0013189X032001005>
- Edelson, D. C. (2002). Design research: What we learn when we engage in design. *Journal of the Learning Sciences*, 11(1), 105–121. https://doi.org/10.1207/S15327809JLS1101_4
- Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. *Science Education*, 88(1), 28–54. <https://doi.org/10.1002/sce.10106>
- Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning. *Educational Psychologist*, 42 (2), 99–107. <https://doi.org/10.1080/00461520701263368>
- Kaya, O. N., & Böyük, U. (2011). Inquiry-based learning practices in science education. *Journal of National Education*, 191, 27–43.
- Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
- Lederman, N. G. (2019). Nature of science and scientific inquiry as contexts for teaching biology. *Journal of Biological Education*, 53(4), 439–452. <https://doi.org/10.1080/00219266.2018.1490688>
- Loughran, J. (2010). What expert teachers do: Enhancing professional knowledge for classroom practice. Routledge.
- Mercer, N., & Howe, C. (2012). Explaining the dialogic processes of teaching and learning. *Learning, Culture and Social Interaction*, 1(1), 12–21. <https://doi.org/10.1016/j.lcsi.2012.03.001>

- Minner, D., Levy, A., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? *Journal of Research in Science Teaching*, 47(4), 474–496. <https://doi.org/10.1002/tea.20347>
- O'Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. *Review on Antimicrobial Resistance*.
- Osborne, J. (2014). Scientific practices and inquiry in the science classroom. *Science Education*, 98 (4), 497–517. <https://doi.org/10.1002/sce.21118>
- Özdemir, G., & Bakırçı, H. (2021). Instructional contributions of low-cost laboratory activities in science education. *Pamukkale University Journal of Education*, 52 (2), 75–92. <https://doi.org/10.9779/pauefd.2021.12345>
- Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. *Studies in Science Education*, 45 (1), 1–42. <https://doi.org/10.1080/03057260903142254>
- Schön, D. (1983). The reflective practitioner: How professionals think in action. Basic Books.
- Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review. *International Journal of Science Education*, 34 (9), 1337–1370. <https://doi.org/10.1080/09500693.2011.605182>
- Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. *International Journal of Science Education*, 24 (4), 357–368. <https://doi.org/10.1080/09500690110066938>
- Ventola, C. L. (2015). The antibiotic resistance crisis: Part I: Causes and threats. *Pharmacy and Therapeutics*, 40 (4), 277–283.
- Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
- Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. *Educational Technology Research and Development*, 53 (4), 5–23. <https://doi.org/10.1007/BF02504682>
- World Health Organization. (2020). Antimicrobial resistance: Global report on surveillance. World Health Organization.
- Yıldırım, A., & Şimşek, H. (2018). Qualitative research methods in the social sciences (11th ed.). Seçkin Publishing.

Appendix

Structured Open-Ended Interview Form

1. How did the workshop implementation contribute to your understanding of the concept of antibiotic resistance?
2. How do you evaluate the processes of observation, data collection, and interpretation that you carried out during the activity?
3. How would you explain the impact of the materials used (gelatin medium, food coloring, discs, and solutions) on your learning process?
4. How did the differences you observed between the first and second implementations affect your learning experience?
5. Would you consider implementing this workshop in your own classroom? Please explain its strengths and limitations in terms of feasibility.
6. What are your suggestions for improving the workshop?

CHAPTER 7

ARTIFICIAL INTELLIGENCE IN SCIENCE TEACHING

Zeki BAYRAM¹
Özden Bilge ÇALIM²

INTRODUCTION

Today, artificial intelligence is approached as a multidimensional field of research that goes beyond technical applications used in different areas and focuses on human-machine interaction. Developments in the field of artificial intelligence reveal that educational processes cannot be reduced to the use of technological tools alone, but must be evaluated together with their pedagogical and cognitive dimensions. In the context of education, artificial intelligence applications enable individual learning differences to be taken into account and teaching designs to be structured more flexibly.

The first part of this book chapter, titled “What is artificial intelligence?”, addresses the theoretical foundations of artificial intelligence. The section titled “Artificial intelligence and education” broadly examines the reflections of artificial intelligence technologies on teaching and learning processes. The section titled “Artificial intelligence literacy” that follows defines AI literacy and explains how it can be developed at the K-12 level and within the curriculum. The section on “Artificial intelligence in science teaching” addresses artificial intelligence in science education, its opportunities and limitations, its effects on understandings of the nature of science, and the transformations emerging in teacher roles. Finally, the section titled “Artificial intelligence tools in science teaching” explains artificial intelligence-based digital tools that can be used in science education.

WHAT IS ARTIFICIAL INTELLIGENCE?

It can be argued that a large part of human thinking is based on organizing words according to rules of reasoning and inference and using them in a meaningful

¹ Assoc. Prof. Dr., Hacettepe Üniversitesi, zeki.bayramm@gmail.com, ORCID iD: 0000-0001-8025-9175

² Hacettepe Üniversitesi, Doktora Öğrencisi, ozdenbilgee@gmail.com, ORCID iD: 0009-0000-3344-276X

an accessible and interactive learning environment for science education through virtual laboratory experiences (Arıcı & Cengiz, 2024).

CONCLUSION

The findings discussed in this section indicate that artificial intelligence should be considered not as a standalone teaching solution in science education, but rather as a supportive structure that shapes pedagogical decisions. Artificial intelligence applications offer significant opportunities in areas such as instructional design, assessment, and monitoring learning processes. It can be stated that the effective use of these opportunities is directly related to teacher guidance and pedagogical objectives.

In the context of science education, artificial intelligence supports students' participation in scientific inquiry processes while also bringing new responsibilities related to the production, verification, and interpretation of knowledge. This indicates that understanding the nature of science should not be limited to content level, but should also involve re-examining how scientific processes are conducted. Therefore, artificial intelligence can be considered an area that both enriches learning environments and highlights the importance of clearly defining pedagogical boundaries in science education.

In this context, the integration of artificial intelligence into science education requires strengthening teacher competencies and adopting an understanding of use based on ethical principles. In this process, the conscious and purposeful use of AI-supported tools can contribute to the creation of more flexible and interactive learning environments in science education.

REFERENCES

- Albadarin, Y., Saqr, M., Pope, N., et al. (2024). A systematic literature review of empirical research on ChatGPT in education. *Discover Education*, 3(1), 60.
- Almasri, F. (2024). Exploring the impact of artificial intelligence in teaching and learning of science: A systematic review of empirical research. *Research in Science Education*, 54(5), 977–997. <https://doi.org/10.1007/s11165-024-10176-3>
- Arıcı, F., & Cengiz, E. (2024). Yapay zekâ ve fen eğitiminde kullanımı. F. Gürbüz (Ed.), *Fen eğitiminin dönüşüm: Teknoloji, mantık ve eğilimler* (ss. 63–83). İKSAD Publishing House. <https://doi.org/10.5281/zenodo.13998927>
- Arslan, K. (2017). Eğitimde Yapay Zeka ve Uygulamaları. *Batı Anadolu Eğitim Bilimleri Dergisi*, 11(1), 71-88.
- Au, C. K., Yoo, S., & Chiu, T. K. (2025). Student Engagement and Teacher Perceived Support in STEAM Education Using Generative AI: A Systematic Review and Direction for Future Research. *School Science and Mathematics*.
- Bentley, C., Aicardi, C., Poveda, S. C., et al. (2023). *A framework for responsible AI education: A working paper*. SSRN. <https://doi.org/10.2139/ssrn.4544010>
- Bozkurt, A., & Sharma, R. C. (2023). Challenging the status quo and exploring the new boundaries

- in the age of algorithms: Reimagining the role of generative AI in distance education and online learning. *Asian Journal of Distance Education*, 18(1).
- Casal-Otero, L., Catala, A., Fernández-Morante, C., et al. (2023). AI literacy in K-12: A systematic literature review. *International Journal of STEM Education*, 10(1), 29.
- Dutton, T. (2018). An overview of National AI strategies. Retrieved October 11th 2025 from <https://medium.com/polit-ics-ai-an-overview-of-national-ai-strategies-2a70e66edfd>
- Erduran, S. (2023). AI is transforming how science is done. Science education must reflect this change. *Science*, 382(6677), eadm9788.
- Gürlek, Y., Bozkoyun, E., Ulutürk, M., et al. (2023). Yapay zekanın eğitime etkileri ve uygulamaları. *International Journal of Original Educational Research*, 1(1), 125-132.
- Kasneci, E., Seßler, K., Küchemann, S., et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. *Learning and individual differences*, 103, 102274.
- Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In *Proceedings of the 2020 CHI conference on human factors in computing systems* (pp. 1-16). Association for Computing Machinery.
- Luckin, R., Holmes, W., Griffiths, M., et al. (2016). Intelligence unleashed: An argument for AI in education. Pearson.
- Maghsudi, S., Lan, A., Xu, J., et al. (2021). Personalized education in the artificial intelligence era: What to expect next. *IEEE Signal Processing Magazine*, 38(5), 37–50. <https://doi.org/10.1109/MSP.2021.3055032>
- McCarthy, J., Minsky, M. L., Rochester, N., et al. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. *AI Magazine*, 27(4), 12. <https://doi.org/10.1609/aimag.v27i4.1904>
- McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, 5(4), 115-133.
- Micheuz, P. (2020). Approaches to Artificial Intelligence as a Subject in School Education. In T. Brinda, D. Passey, & T. Keane (Eds), *Empowering Teaching for Digital Equity and Agency*. OCCE 2020. IFIP Advances in Information and Communication Technology, 595. Springer. https://doi.org/10.1007/9783030598471_1
- Park, J., Teo, T. W., Teo, A., et al. (2023). Integrating artificial intelligence into science lessons: Teachers' experiences and views. *International Journal of STEM Education*, 10(1), 61.
- Ramnarain, U., Ogegbo, A. A., Penn, M., et al. (2024). Pre-service science teachers' intention to use generative artificial intelligence in inquiry-based teaching. *Journal of Science Education and Technology*, 1-14.
- Sleeman, D. ve J.S. Brown. (1982). *Intelligent Tutoring Systems*. New York: Academic Press.
- Tang, K. S., Cooper, G., & Nielsen, W. (2024). Philosophical, Legal, Ethical, and Practical Considerations in the Emerging Use of Generative AI in Academic Journals: Guidelines for Research in Science Education (RISE). *Research in Science Education*, 54(5), 797–807. <https://doi.org/10.1007/s11165-024-10192-3>
- Turing, A. M. (2007). Computing machinery and intelligence. In *Parsing the Turing test: Philosophical and methodological issues in the quest for the thinking computer* (pp. 23-65). Dordrecht: Springer Netherlands.
- Wang, P. (2019). On defining artificial intelligence. *Journal of Artificial General Intelligence*, 11(2), 1. <https://doi.org/10.2478/jagi-2019-0002>
- Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e learning. San Francisco, CA: Morgan Kaufmann.

CHAPTER 8

A SYSTEMATIC REVIEW ON THE ROLE OF DIGITAL TOOLS IN BIOTECHNOLOGY EDUCATION

Aycan KİBAR ERDOĞAN¹
Semra MİRİCİ²

INTRODUCTION

Biotechnology education is an interdisciplinary approach that utilizes living systems and organisms to develop products and services for the benefit of humanity (Smith, 2012). Beyond providing students with theoretical knowledge in the basic sciences, this field of education offers opportunities to develop essential skills such as applying knowledge to real-world problem solving, critical thinking, problem-solving, and collaboration (Stewart, 2003). Today, biotechnology education encompasses areas such as microbiology, biochemistry, molecular biology, and genetic engineering, preparing students to assume innovative roles in critical sectors including health, agriculture, and industry. At the same time, this process contributes to the development of individuals who can make informed and responsible decisions regarding the social and ethical issues brought about by biotechnology, while enhancing their scientific and technical knowledge levels (Macer, 2000).

Improving the quality of education is directly related to the quality of the content presented to students. However, the effective transfer of this content into the learning process is closely linked to the pedagogical methods and tools employed. In the twenty-first century, technology has moved beyond being merely a supportive element and has become an integral component of education systems, on par with textbooks and teachers (Aydın & Soyer, 2020). With the acceleration

¹ MSc Student, Gazi University, Gazi Faculty of Education, aycankibar1@gmail.com, ORCID iD: 0009-0007-1555-593X

² Prof. Dr., Gazi University, Gazi Faculty of Education, Department of Mathematics and Science Teaching, semramirici@gmail.com, ORCID iD: 0000-0003-4999-8628

REFERENCES

- Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. *Educational Research Review*, 20, 1–11. Doi: 10.1016/j.edurev.2016.11.002
- Akkaya, G., & Köksal, M. S. (2013). An investigation of knowledge among prospective special education teachers about giftedness. *Educational Sciences: Theory & Practice*, 13(2), 1021–1027.
- Akkoyunlu, B., & Kurbanoğlu, S. (2019). Bilgi okuryazarlığı ve dijital yeterlikler bağlamında öğretmen eğitimi. *Hacettepe Üniversitesi Eğitim Fakültesi Dergisi*, 34(1), 1–15.
- Akpınar, E., & Ergin, Ö. (2016). A study of developing an attitude scale for using scientific process steps. *Journal of Education and Practice*, 7(15), 134–141.
- Ambusaidi, A., Al-Balushi, S., Al-Salti, F. (2023). Building sixth-grade students' use of mnemonics in science. *Journal of Educational and Psychological Studies*, 17(2), 245–261.
- Aydin, M., & Soyer, İ. (2020). Teknoloji okuryazarlığı ve fen öğretimi. A. Artun, S. Aydin-Günbatar & M. S. Günbatar (Ed.), *Fen öğretiminde teknoloji eğitimi* içinde (s. xx–xx). Ankara: Pegem Akademi.
- Bayram, H., & Sarı, M. (2015). Sınıf öğretmeni adaylarının fen ve teknoloji dersine yönelik tutumlarının incelenmesi. *Eğitim ve Bilim*, 40(177), 281–298.
- Bean, J. C. (2011). *Engaging ideas: The professor's guide to integrating writing, critical thinking, and active learning in the classroom* (2nd ed.). San Francisco: Jossey-Bass.
- Byukusenge, C., Nsanganwimana, F., & Tarmo, A. P. (2013). Investigating the effect of virtual laboratories on students' academic achievement in biology in Rwandan secondary schools. *African Journal of Educational Studies in Mathematics and Sciences*, 11, 47–55.
- Çakır, M., & Dönmez, Ş. (2018). Xeriscape: Efficient water use approach in landscape architecture. *V. International Multidisciplinary Congress of Eurasia*, 24–26 July 2018, Barcelona, Spain.
- Çalik, M., & Sözbilir, M. (2014). Parameters of content analysis. *Education and Science*, 39(174), 33–38.
- Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students' understandings of molecular genetics. *Journal of Research in Science Teaching*, 44(7), 938–963.
- Gündüz, B., Demir, S., & Yıldırım, A. (2019). Natural nutrition, healthy life & sport. *5th International Eurasian Congress on Natural Nutrition, Healthy Life and Sport*, 2–6 October 2019, Ankara, Turkey.
- Hallinger, P. (2018). A systematic review of research on instructional leadership development. *Educational Management Administration & Leadership*, 46(1), 5–43.
- Haskel-İtta, M., & Yarden, A. (2018). Students' conceptions of genetic phenomena and their effect on learning underlying mechanisms. *CBE—Life Sciences Education*, 17(3), ar36.
- Kaufmann, G., & Vosburg, S. K. (2020). The role of affect and its regulation for creativity and innovation. M. Hundeling (Ed.), *The Cambridge handbook of creativity and emotion* içinde (s. 231–254). Cambridge: Cambridge University Press.
- Kaya, E., & Gözütok, F. D. (2018). Biyoloji öğretiminde laboratuvar uygulamalarının karşılaştığı sorunlar. *Eğitim ve Bilim*, 43(196), 25–40.
- Kılıç Mocan, D. (2021). Türkiye'de eğitsel nörobilim konusunda yapılmış araştırmaların analizi. *Türkiye Bilimsel Araştırmalar Dergisi*, 6(2), 468–480.
- Kozma, R. B. (2003). *Technology, innovation, and educational change: A global perspective*. Eugene, OR: ISTE.
- Lewis, J., Leach, J., & Wood-Robinson, C. (2000). Biotechnology, inquiry, and public education. *Trends in Biotechnology*, 18(8), 329–330.
- Macer, D. R. J. (2000). Bioethics and the impact of biotechnology on education. *Eubios Journal of Asian and International Bioethics*, 10(3), 66–69.
- Makransky, G., & Lilleholt, L. (2018). Emotional value of immersive virtual reality in education. *Educational Technology Research and Development*, 66(5), 1183–1204.
- Makransky, G., Thisgaard, M., & Gadegaard, H. (2016). Virtual simulations as preparation for lab

- exercises. *PLoS ONE*, 11(6), e0155895. Doi: 10.1371/journal.pone.0155895
- Milli Eğitim Bakanlığı. (2019). *Eğitimde dijital dönüşüm ve FATİH Projesi faaliyet raporu*. Ankara: MEB Yayıncıları.
- Murni, S. (2021). Active learning strategy on higher education biology learning: A systematic review. *Journal of Physics: Conference Series*, 1796(1), 012045.
- Nasir, M., Lestari, H., & Rahmawati, I. (2021). Implementation of blended learning with a STEM approach to improve students' science literacy on biotechnology. *Journal of Physics: Conference Series*, 1796(1), 012045.
- Nguyen, H. T. T., Pham, T. H., & Nguyen, T. D. (2019). Using problem-based learning in STEM teaching. *Journal of Science Education and Technology*, 28(5), 519–530.
- Oser, R., & Fraser, B. J. (2015). The curriculum? That's just a unit outline, isn't it? *Curriculum and Teaching*, 30(1), 5–22.
- Özdemir, O. (2021). Türkiye'de biyoteknoloji eğitiminin mevcut durumu ve öğretimsel sorunlar. *Uludağ Üniversitesi Eğitim Fakültesi Dergisi*, 34(2), 451–472.
- Papadopoulos, I., Ali, S., & Kamal, A. (2021). Compassionate leadership in nursing and midwifery. *BMJ Leader*, 6(3), 186–193.
- Papadopoulos, T., Gunasekaran, A., Dubey, R. (2017). Big data and analytics in operations and supply chain management. *International Journal of Operations & Production Management*, 37(10), 1285–1313.
- Seferoglu, S. S. (2020). Dijital teknolojiler ve eğitim. *Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi*, 53(1), 1–24.
- Smith, J. E. (2012). *Biotechnology*. Cambridge: Cambridge University Press.
- Smith, J. E., & Knight, J. (2012). Biological inquiry: A new course and assessment plan. *CBE—Life Sciences Education*, 11(4), 391–400.
- Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction. *International Journal of Science Education*, 34(9), 1337–1370. Doi: 10.1080/09500693.2011.605182
- Stewart, C. N. (2003). The future of biotechnology education. *AgBioForum*, 6(1–2), 79–81.
- Suryani, N., & Prasetyo, B. (2020). Ethno-STEM based discovery learning. *Journal of Physics: Conference Series*, 1567(3), 032078.
- Tatlı, Z., & Ayas, A. (2019). Sanal laboratuvar uygulamalarının fen eğitimindeki yeri ve önemi. *Fen Bilimleri Öğretimi Dergisi*, 7(1), 1–15.
- Treagust, D. F., Tsui, C. Y., & Harrison, A. G. (2018). Conceptual change: Theoretical, methodological and practical challenges. *Cultural Studies of Science Education*, 3(2), 297–307.
- Tsui, C. Y., & Treagust, D. F. (2010). Conceptual change as a framework for science learning. *International Journal of Science Education*, 32(12), 1561–1571.
- Wang, X. F., Zhang, Y., & Li, Y. (2017). Hedgehog signaling pathway. *Scientific Reports*, 7(1), 1–12.
- Wu, H. K., & Lee, S. W. (2015). Developing digital learning environments for scientific inquiry. *Journal of Science Education and Technology*, 24(5), 624–639.
- Yıldırım, A., & Şimşek, H. (2016). *Sosyal bilimlerde nitel araştırma yöntemleri* (10. Baskı). Ankara: Seçkin Yayıncılık.
- Yıldız, M., & Aksu, M. (2020). Genetik ve biyoteknolojiye yönelik bilgi ve tutumlar. *Çukurova University Faculty of Education Journal*, 49(1), 488–523.

CHAPTER 9

UNDERSTANDING SCIENCE MOTIVATION ACROSS TEACHER EDUCATION PROGRAMS: A COMPREHENSIVE DEMOGRAPHIC ANALYSIS

Yüksel ALTUN¹
Sevda SERİN²

INTRODUCTION

International large-scale assessments and systematic reviews consistently show that students' interest and motivation in science tend to decline over the course of the school years, with implications for both STEM participation and broader scientific literacy (OECD, 2019; Potvin & Hasni, 2014). At the same time, teachers' own motivation, beliefs, and values about science are closely linked to their instructional practices and to their students' engagement and achievement (Areepattamannil et al., 2019; Vedder-Weiss & Fortus, 2018). As the primary mediators of curriculum in classrooms, teachers transmit not only scientific knowledge but also their enthusiasm, values, and confidence in science. Understanding how future teachers themselves are motivated to learn science is, therefore, a critical prerequisite for designing teacher education programs that can sustain high-quality science teaching and foster students' long-term engagement with science.

SCIENCE MOTIVATION: THEORETICAL BACKGROUND

Research on academic motivation is often framed by three complementary perspectives: expectancy-value theory, self-determination theory, and social cognitive views of self-efficacy. Expectancy-value theory (Eccles & Wigfield, 2002, 2020) highlights learners' beliefs about their competence (expectancies for success), the

¹ Prof. Dr., Gazi University, Gazi Faculty of Education, Department of Chemistry Education, yukseloz@gazi.edu.tr, ORCID iD: 0000-0002-5749-0528

² Teacher, Ministry of National Education, serinsevda@hotmail.com, ORCID iD: 0009-0003-1358-149X

CONCLUSION

This study offers one of the most comprehensive demographic portraits to date of science motivation among preservice teachers in a non-Anglophone context. Using the SMQ-II with a large, multi-institutional sample of Turkish teacher education students, the results show that while overall motivation is high, significant differences emerge by gender, program type, specific major, and year level. Science majors tend to cultivate higher intrinsic, career, and self-determination motivation, as well as self-efficacy. In contrast, nonscience majors exhibit more moderate levels, raising concerns about the future of science teaching in primary and early childhood grades. Year-level patterns further suggest that motivation is shaped by the structure and demands of teacher education over time.

By integrating these findings with contemporary motivation theories and prior SMQ-II research, and by building directly on the validated Turkish adaptation reported in our earlier study (Altun & Serin, 2025), the study underscores that designing teacher education programs that support both the strength and the quality of preservice teachers' science motivation is essential for building a scientifically literate society. Future work that combines longitudinal, multi-method, and cross-cultural perspectives will be crucial for deepening understanding of how best to support the next generation of science teachers.

REFERENCES

- Aeschlimann, B., Herzog, W., & Makarova, E. (2016). How to foster students' motivation in mathematics and science classes: Results of an intervention study in Swiss high schools. *International Journal of Science and Mathematics Education*, 14(3), 535–553.
- Altun, Y., & Serin, S. (2025). Cross-cultural validation of the Science Motivation Questionnaire II (SMQ-II) with Turkish preservice teachers across science and nonscience majors. In S. Mirici & D. Sönmez (Eds.), *Global perspectives in educational research II* (pp. 11–34). Akademisyen Yayinevi Kitabevi.
- Areepattamannil, S., Cairns, D., & Dickson, M. (2019). Teacher-directed versus inquiry-based science instruction: Investigating links to adolescents' science dispositions across 66 countries. *Journal of Educational Psychology*, 111(2), 226–245.
- Ardura, I. R., & Pérez-Bitrián, A. (2018). Motivation and performance in science: The contribution of the Science Motivation Questionnaire II to Spanish students. *Psicothema*, 30(2), 166–171.
- Bandura, A. (1997). *Self-efficacy: The exercise of control*. W. H. Freeman.
- Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. *Spine*, 25(24), 3186–3191.
- Black, A. E., & Deci, E. L. (2000). The effects of instructors' autonomy support and students' autonomous motivation on learning organic chemistry: A self-determination theory perspective. *Science Education*, 84(6), 740–756.
- Boone, W. J., Staver, J. R., & Yale, M. S. (2014). *Rasch analysis in the human sciences*. Springer.
- Britner, S. L., & Pajares, F. (2006). Sources of Science Self-Efficacy Beliefs Among Middle School Students. *Journal of Research in Science Teaching*, 43(5), 485–499.
- Chen, J. A., & Usher, E. L. (2013). Profiles of the sources of science self-efficacy. *Learning and Individual Differences*, 24, 11–21.

- Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11(4), 227–268.
- Dong, Y., Wang, J., & Wang, X. (2020). Validation of a Chinese version of the Science Motivation Questionnaire II. *Journal of Baltic Science Education*, 19(5), 716–729.
- Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. *Annual Review of Psychology*, 53, 109–132.
- Eccles, J. S., & Wigfield, A. (2020). From expectancy–value theory to situated expectancy–value theory: A developmental, social cognitive, and sociocultural perspective on motivation. *Contemporary Educational Psychology*, 61, 101859.
- Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science Motivation Questionnaire II: Validation with science majors and nonscience majors. *Journal of Research in Science Teaching*, 48(10), 1159–1176.
- Hambleton, R. K., Merenda, P. F., & Spielberger, C. D. (Eds.). (2005). *Adapting educational and psychological tests for cross-cultural assessment*. Lawrence Erlbaum.
- International Test Commission. (2018). The ITC Guidelines for Translating and Adapting Tests (Second Edition). *International Journal of Testing*, 18(2), 101–134.
- Kang, J., & Keinonen, T. (2017). The effect of student-centered approaches on students’ interest and achievement in science: Relevant factors in Finnish and South Korean contexts. *Research in Science Education*, 47(4), 755–778.
- Kang, J., & Keinonen, T. (2018). The effect of inquiry-based learning on students’ science attitudes and self-efficacy: Evidence from PISA 2015. *International Journal of Science Education*, 40(11), 1361–1385.
- Klassen, R. M., Frenzel, A. C., & Perry, N. E. (2012). Teachers’ relatedness with students: An underemphasized component of teachers’ basic psychological needs. *Journal of Educational Psychology*, 104(1), 150–165.
- Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., Bouter, L. M., & de Vet, H. C. W. (2018). COSMIN methodology for systematic reviews of patient-reported outcome measures (PROMs). *Quality of Life Research*, 27(5), 1147–1157.
- OECD. (2019). *PISA 2018 results (Volume II): Where all students can succeed*. OECD Publishing.
- Osborne, J., & Dillon, J. (2008). *Science education in Europe: Critical reflections*. Nuffield Foundation.
- Potvin, P., & Hasni, A. (2014). Interest, motivation, and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. *Studies in Science Education*, 50(1), 85–129.
- Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. *Developmental Review*, 41, 71–90.
- Ryan, R. M., & Deci, E. L. (2020). *Self-determination theory: Basic psychological needs in motivation, development, and wellness*. Guilford Press.
- Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: Adaptation and validation of the Science Motivation Questionnaire II with Greek secondary school students. *Chemistry Education Research and Practice*, 16(2), 237–250.
- Schumm, M. F., & Bogner, F. X. (2016). Measuring adolescent science motivation. *International Journal of Science Education*, 38(3), 434–449.
- Toma, R. B., Costa-Lobo, C., & Araújo, A. (2023). Investigating science motivation among Brazilian students: A validation study of the Science Motivation Questionnaire II. *Research in Science & Technological Education*. Advance online publication.
- Vedder-Weiss, D., & Fortus, D. (2018). Adolescents’ declining motivation to learn science: Inevitable or not? *Journal of Research in Science Teaching*, 55(8), 1053–1075.
- Yuenyong, C., & Narjaikae, P. (2009). Scientific Literacy and Thailand’s Science Education *International Journal of Environmental and Science Education*, 4(3), 335–349.
- Zhang, W., & Zhou, S. (2023). Adapting and validating the Science Motivation Questionnaire II for Chinese senior high school students in chemistry. *Chemistry Education Research and Practice*, 24(1), 1–15.

CHAPTER 10

A NEW PERSPECTIVE ON GRIGOL ROBAKIDZE'S WORK AS A TRACE OF EUROPEAN CULTURAL DIPLOMACY

Lasha KHOZREVANİDZE¹
GuguliTURMANİDZE²

INTRODUCTION

Grigol Robakidze, as the pioneer of Modernism in Georgia, was the first Georgian writer and representative of cultural and informal diplomacy who reintroduced the exotic land of Georgia to the European audience. Nevertheless, certain questions arise concerning the author who created literary portraits of the leaders of socialism, as well as of the Führers of National Socialist and Fascist ideologies. Interest in the biographical facts of Grigol Robakidze's life, his legacy, and his personal archives remains strong to this day. Simultaneously, the search for his scattered works, political essays, and biographical documents across different parts of the world continues.

Due to the complex and dramatic trajectory of his life - from the village of Svieri in the Zestaponi Municipality to Leuville in France - there still remain numerous unexplored episodes of his biography. Newly discovered or recently translated works from German into Georgian, along with a variety of other materials, offer scholars and interested readers opportunities for fresh interpretations and a deeper understanding of Robakidze's personality and literary contribution.

Grigol Robakidze was both a witness and an active participant in major historical events and cataclysms. He was born and raised during the period of Tsarist Russia, spent his youth in Socialist Georgia of the 1930s, and was later forced into exile in Germany. During the Second World War, the writer found refuge in

¹ Prof., Grigol Robakidze University, khozrevanidze_lasha@yahoo.com, ORCID iD: 0009-0003-2936-5740

² Prof., Grigol Robakidze University, g.turmanidze@gruni.edu.ge, ORCID iD: 0000-0003-1675-1573

ancient and great history.”

The founder of the well-known and influential Georgian poetic order “Tsisperkantselebi”, Robakidze soon became the target of the Soviet Union’s security services, which began combating him through well-tested methods. His play *Lamara* enjoyed immense popularity in Russia and, despite the ban on his works, continued to be staged on Russian theatre stages due to public demand. However, under the censorship of the State Security Committee, the author’s name was deliberately replaced and Vazha-Pshavela was falsely listed as its author.

Although the Soviet system declared Robakidze a “traitor to the homeland” and a “foreign spy” historical memory has preserved him as one of the greatest thinkers of the twentieth century, a pioneer of modernism, and an important public figure. Under the harshest living conditions, he fled his homeland to escape the Soviet totalitarian system and, in an irony of fate, found himself in another totalitarian world Nazi Germany.

Despite persecution by the Soviet totalitarian regime and his death in exile, interest in Robakidze’s life and work grew rapidly in Georgia after the collapse of the Soviet Union and remains strong today. We believe that for new perspectives in the study of his legacy, it will be essential in the future to thoroughly examine his publications, dispersed archival materials, and personal documentation an undertaking that constitutes a future objective of our research.

REFERENCES

- Frisé, A. (2004). *Wir leben immer mehrere Leben: Erinnerungen*. Reinbek: Rowohlt Verlag.
- Barbian, J.-P. (1995). *Literaturpolitik im „Dritten Reich“: Institutionen, Kompetenzen, Betätigungsfelder*. Frankfurt am Main.
- Bakradze, A. (1990). *The Taming of Literature* (pp. 40–41). Tbilisi.
- Hoover Institution Archives. (2009). *Radio Free Europe/Radio Liberty, Inc.: A register of its corporate records in the Hoover Institution Archives*. Stanford, CA: Hoover Institution, Stanford University.
- Mnatobi. (1935). *Mnatobi* (No. 4). Tbilisi: საბერძნებელი. Iverieli
- Lominashvili, R. (Ed.). (1996). *Grigol Robakidze: For Me, Truth Is Everything*. Tbilisi: Jeck-Service.
- Gagnidze, N. (2021). *Life in Two Worlds: Grigol Robakidze*. Tbilisi: Artanuji Publishing.
- Rayfield, D. (2000). *The Literature of Georgia: A History* (2nd rev. ed.). Richmond, England: Curzon Press.
- Schmitt, W. E. (1961). *Krieg in Deutschland: Strategie und Taktik der sowjetrussischen Deutschlands-politik seit 1945*. Düsseldorf.
- Schuchard, M. (1962). *Nachruf für Grigol Robakidze. Die Tat* (Switzerland);
- Sombart, N. (1984). *Jugend in Berlin, 1933–1943: Ein Bericht* (pp. 158–173). München: C. Hanser.
- Triebel, F. (2003). *Kultur und Kalkül: Der Eugen-Diederichs-Verlag, 1930–1949* (Diss., Univ. Konstanz). Retrieved from <http://www.ub.uni-konstanz.de/kops/volltexte/2003/1123>
- Zedelashvili, Sh. (2008). Meeting with Grigol Robakidze. In N. Jolokhava (Ed.), *Lives of Distinguished People* (pp. 245–248). Tbilisi.
- Sharadze, R. (2005). *Literaturuli Sakartvelo*, (12–17);

CHAPTER 11

CULTURALLY RESPONSIVE CLASSROOM MANAGEMENT AND THE REFLECTIONS OF TEACHER COMPETENCIES IN EDUCATIONAL PROCESSES

Esen SUCUOĞLU¹
Nesrin M. BAHÇELERLİ²

INTRODUCTION

The educational scene of today is marked by a culturally, linguistically, and socio-economic varied student body. This diversity calls for instructors to rethink their classroom management strategies and develop a teaching approach valuing cultural awareness (Naz et al., 2023). Standardizing discipline, order, and teaching techniques, traditional classroom management methods usually ignore students' cultural backgrounds. Culturally responsive classroom management, though, presents a point of view that considers their cultural identities as a natural and important aspect of the learning process (Acar-Ciftci, 2019). Based on Geneva Gay and Gloria Ladson-Billings's Framework of Culturally Responsive Education, the theoretical underpinnings of this approach center on this model. This approach consciously integrates students' cultural references into the learning process so advancing both academic achievement and socio-cultural growth (Karagöl, 2025).

Teachers' ability to plan in a manner suitable to cultural diversity, to create democratic classroom connections, to use inclusive teaching techniques, and to include students' cultural backgrounds into the learning process are the core components of a culturally responsive educational strategy (Cruz et al., 2020). Effective execution of culturally sensitive classroom management depends on the

¹ Near East University, Faculty of Education, Nicosia, North Cyprus, esen.sucuoglu@neu.edu.tr, ORCID iD: 0000-0002-0978-7984

² Prof. Dr., Near East University, Faculty of Tourism, Tourism Research Center, Nicosia, North Cyprus, nesrin.menemenci@neu.edu.tr, ORCID iD: 0000-0003-1657-3420

of belonging, motivation, and success. Here it is underlined why it is imperative to more frequently include culturally sensitive teaching methods in teacher education programs and educational policies. It is imperative to set up practical seminars for future teachers on cultural sensitivity, handling biases, and inclusive classroom management strategies in teacher training programs in order to promote cultural awareness. Supporting instructors in topics like conflict resolution strategies, multicultural teaching techniques, and cultural communication skills is expected to raise the standard of classroom interaction and learning environment. Moreover, finding methods for establishing an inclusive school culture will help to guarantee the institutional sustainability of culturally sensitive classroom management techniques. Furthermore, to help the body of knowledge and better grasp how culturally responsive teaching techniques affect students' attainment levels, experimental or qualitative data collecting projects can be carried out.

REFERENCES

- Abacioglu, C. S., Volman, M., & Fischer, A. H. (2020). Teachers' multicultural attitudes and perspective taking abilities as factors in culturally responsive teaching. *British journal of educational psychology*, 90(3), 736-752.
- Acar-Ciftci, Y. (2019). Multicultural Education and Approaches to Teacher Training. *Journal of Education and Learning*, 8(4), 136-152.
- Batmaz, O. (2023). An Examination of Classroom Teachers' Sensitivity to Cultural Values. *Celal Bayar University Journal of Social Sciences*, 21(1), 127-141.
- Chang, W. C., & Viesca, K. M. (2022). Preparing teachers for culturally responsive/relevant pedagogy (CRP): A critical review of research. *Teachers College Record*, 124(2), 197-224.
- Cruz, R. A., Manchanda, S., Firestone, A. R., & Rodl, J. E. (2020). An examination of teachers' culturally responsive teaching self-efficacy. *Teacher Education and Special Education*, 43(3), 197-214.
- Evans, L. M., Turner, C. R., & Allen, K. R. (2020). "Good Teachers" with "Good Intentions": Misappropriations of Culturally Responsive Pedagogy. *Journal of Urban Learning, Teaching, and Research*, 15(1), 51-73.
- Gage, N. A., Scott, T., Hirn, R., & MacSuga-Gage, A. S. (2018). The relationship between teachers' implementation of classroom management practices and student behavior in elementary school. *Behavioral disorders*, 43(2), 302-315.
- Gay G. (2010). *Culturally responsive teaching: Theory, research, and practice* (2nd ed.). New York, NY: Teachers College Press.
- Gay, G. (2014). Culturally responsive teaching principles, practices, and effects. In *Handbook of urban education* (pp. 391-410). Routledge.
- Gay, G. (2021). Culturally responsive teaching: Ideas, actions, and effects. In *Handbook of urban education* (pp. 212-233). Routledge.
- Genç, Ö., & Yurdakal, İ. H. (2024). An Examination of the Relationship Between Classroom Teachers' Self-Efficacy Beliefs and Their Classroom Management Skill Levels. *Education and Society in the 21st Century*, 13(37), 27-42.
- Hamdan, S., & Coloma, R. S. (2022). Assessing Teachers' Cultural Competency. *Educational Foundations*, 35(1), 108-128.
- Handini, O. (2024). Contribution of Teachers' Pedagogical Competencies and Professional Competencies to Classroom Management. *Research Horizon*, 4(2), 1-8.
- Karagöl, İ. (2025). Culturally Responsive Teaching: A Bibliometric Investigation of Scholarly Tren-

- ds. *Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi*, (64), 2255-2277.
- Karatas, K. (2020). The competencies of the culturally responsive teacher: What, why and how?. *ie: Inquiry in Education*, 12(2), 2.
- Martin, N. K., Schafer, N. J., McClowry, S., Emmer, E. T., Brekelmans, M., Mainhard, T., & Wubbels, T. (2016). Expanding the definition of classroom management: Recurring themes and new conceptualizations. *Journal of Classroom Interaction*, 31-41.
- Marzano, R. J., & Marzano, J. S. (2003). The key to classroom management. *Educational leadership*, 61(1), 6-13.
- Muñiz, J. (2019). Culturally Responsive Teaching: A 50-State Survey of Teaching Standards. *New America*.
- Naz, F. L., Afzal, A., & Khan, M. H. N. (2023). Challenges and benefits of multicultural education for promoting equality in diverse classrooms. *Journal of social sciences review*, 3(2), 511-522.
- Shank, M. K., & Santiague, L. (2022). Classroom management needs of novice teachers. *The Clearing house: a Journal of educational strategies, issues and ideas*, 95(1), 26-34.
- Siwatu, K. O. (2011). Preservice teachers' culturally responsive teaching self-efficacy-forming experiences: A mixed methods study. *The Journal of educational research*, 104(5), 360-369.
- Siwatu, K. O., Putman, S. M., Starker-Glass, T. V., & Lewis, C. W. (2017). The culturally responsive classroom management self-efficacy scale: Development and initial validation. *Urban Education*, 52(7), 862-888.
- Soylu, A., & Kaysili, A. (2022). Evaluating Teachers' Self-Efficacy in Culturally Responsive Teaching: An Adaptation and Implementation Study. *Journal of Educational Sciences*, Ataturk Faculty of Education, Marmara University, 55(55), 1-30.
- Taylor, R. W. (2010). The role of teacher education programs in creating culturally competent teachers: A moral imperative for ensuring the academic success of diverse student populations. *Multicultural Education*, 17(3), 24-28.
- Weinstein, C. S. & Tomlinson-Clarke, S., & Curran, M. (2004). Toward a conception of culturally responsive classroom management. *Journal of teacher education*, 55(1), 25-38.

CHAPTER 12

EXAMINATION OF BIOLOGY TEACHER CANDIDATES' VIEWS ON CORRECT BREATHING TECHNIQUES¹

Yeşim ÇAĞLI²
Hikmet TÜRK KATIRÇIOĞLU³

INTRODUCTION

Biology is a science that studies the formation of living things, the structures of all living things from the simplest to the most complex, the basic life processes that take place in their bodies, their diversity, growth and development, their behavior, their relationships with each other and their environment, and their distribution on Earth; it is a constantly progressing science open to new developments and intertwined with life (Güneş, 2008). Biology, as a science based on the concept of life, strives to explain the fundamental principles of life to humanity, both for itself and for other living things. By examining what life is, how it continues, and the relationships between living things and the non-living environment, it explores ways to maintain and improve existing positive conditions, and with ever-evolving technology, it provides us with new information. Issues closely related to human life, such as production, nutrition, environmental problems, health, diseases, marriage, family relationships, and even learning and memory, can only be addressed through biology education (Yetkin, 2001). The primary aim of biology lessons is not only to prepare students for university entrance exams, but also to cultivate individuals who possess scientific literacy and can adapt to technological advancements (Baran, Doğan, and Yalçın, 2002). In this respect, the education and teaching of biology is important (Yetkin, 2001).

¹ This article is based on a master's thesis entitled "Examination of Biology Teacher Candidates' Views on Correct Breathing Techniques," completed in December 2025.

² M.S, Gazi University, ysmcgl18@gmail.com, ORCID iD:0009-0001-8777-1355

³ Prof. Dr., Gazi University, hturk@gazi.edu.tr, ORCID iD: 0000-0002-4866-6106

Recommendations

Based on the results of this research, the following recommendations are made:

1. All teacher training undergraduate programs could include a mandatory or elective course on diaphragm and rib-supported breathing techniques. The content of these courses could be prepared by voice trainers with conservatory backgrounds, speech and language therapists, or certified, qualified instructors in this field.
2. Digital learning materials, mobile applications, and interactive video lesson content, supported visually and audibly, could be developed to enable prospective teachers and current teachers to learn breathing and vocal techniques at their own pace.
3. In the future, large-scale, long-term follow-up studies could be conducted to measure the effects of correct breathing techniques on prospective teachers' professional self-efficacy, emotional intelligence, and long-term vocal health.
4. By developing elements of bodily awareness, such as body language, the aim could be to both protect the teacher's vocal health and increase their classroom control.

REFERENCES

- Ağduk, A. (2004). *Examination of teachers' voice usage habits and their knowledge levels regarding voice hygiene and voice disorders*. Master's Thesis, Anadolu University, Institute of Health Sciences, Eskişehir.
- Akkaya, A. (2012). Teacher candidates' views on speech problems. *Mustafa Kemal University Journal of Social Sciences Institute*, 9(20), 405-420.
- Başkent University (2025). *Faculty of Education undergraduate curriculum*. (Accessed on 10/11/2025 from <https://truba.baskent.edu.tr/bilgipaketi/?dil=TR&menu=akademik&inner=katalog&birim=385>).
- Boyd, D. J., Grossman, P. L., Lankford, H., Loeb, S., & Wyckoff, J. (2009). Teacher preparation and student achievement. *Educational Evaluation and Policy Analysis*, 31(4), 416-440.
- Ertürkler, A. (2009). *The effect of problem-solving training using music relaxation techniques on teachers' classroom management skills*. Master's Thesis, Maltepe University Institute of Social Sciences, İstanbul.
- Evren F. (2006). *The use of voice training methods in the treatment of voice disorders*. Master's Thesis, Selçuk University Institute of Social Sciences, Konya.
- Güneş, G. (2008). *The problem of foreign terms in biology education and a study of Turkish terminology*. Master's Thesis, Gazi University Institute of Educational Sciences, Ankara.
- Kaya, Ö. and Bozkurt, Ü. (2019). A case study on the competencies of speaking. *Turkish Cumhuriyet International Journal of Education*, 8(3), 904-925.
- Konrot, A. (1998). Verbal language and speech problems. In S. Eripek (Ed.), *Special education* (pp. 110-125). Eskişehir: Anadolu University.
- Koyuncu B. (2021). *Biology teachers' views on the courses in the biology education undergraduate program*. Master's Thesis, Gazi University Institute of Educational Sciences, Ankara.
- Krippendorff, K. (2018). *Content analysis: An introduction to its methodology* (4th Ed.). Thousand Oaks: SAGE.

- Korthagen, F., Loughran, J., & Russell, T. (2006). Developing fundamental principles for teacher education programs and practices. *Teaching and Teacher Education*, 22(8), 1020-1041.
- Küçükyılmaz, Y. E. A., & Duban, A. N. (2006). Opinions of prospective primary school teachers on measures to increase their science teaching self-efficacy beliefs. *Van Yüzüncü Yıl University Faculty of Education Journal*, 3(2), 1-21.
- Kvale, S., & Brinkmann, S. (2009). *InterViews: Learning the craft of qualitative research interviewing* (2nd Ed.). Thousand Oaks: SAGE.
- Malkoç, T. (1998). *The effect of voice training on voice functions during adolescence*, (Unpublished Doctoral Thesis), Marmara University Institute of Science, Istanbul.
- Malkoç, T. (2012). A review on the contribution of relaxation techniques to voice training. *Journal of Educational and Instructional Research*, 1(2), 288-294.
- Marmara University (2025). *Faculty of education undergraduate curriculum*. (Accessed on 10/11/2025 from <https://meobs.marmara.edu.tr/Ders/diksiyon/tde506-6697-20>).
- Mayring, P. (2014). *Qualitative content analysis: Theoretical foundation, basic procedures and software solution*. Klagenfurt: SSOAR.
- Ömür, M., Ökçün, E. (1996), Professional voice disorders and treatment, in *Voice and Voice Disorders* (p. 130), Istanbul: Ekin Medical Publishing.
- Patton, M. Q. (2015). *Qualitative research & evaluation methods* (4th Ed.). Thousand Oaks: Sage.
- Poland, B. D. (2002). Transcription quality. In J. F. Gubrium & J. A. Holstein (Eds.), *Handbook of interview research: Context and method* (pp. 629-649). Thousand Oaks: Sage.
- Şen, F. (2023). *Activity designs to overcome fear and anxiety of speaking*. Master's Thesis, Kütahya Dumlupınar University Graduate Education Institute, Kütahya.
- Şışman, M. (2016). *Introduction to teaching*. Ankara: Pegem.
- Taşkaya, S. M. (2012). Examination of the characteristics that a qualified teacher should possess according to the opinions of prospective teachers. *Erciyes University Journal of Social Sciences Institute*, 1(33), 283-298.
- Uzuner, S. (2009). *The importance and analysis of diction and voice breathing exercises in the art of acting*. Master's Thesis, Bahçeşehir University Institute of Social Sciences, Istanbul.
- VERBI Software. (2022). MAXQDA 2022 [Computer software]. Berlin: VERBI.
- Wikipedia. (2025). *Respiratory system*. (Accessed 15/08/2024 from https://tr.wikipedia.org/wiki/Solunum_sistemi).
- Yalçın, E., & Özbaşaran, F. (2021). Effects of breath therapy on general health and women's health. *Istanbul Sabahattin Zaim University Journal of Science Institute (IZÜFBED)*, 3(1), 45-53.
- Yalçın, H. (2022). Phenomenology as a research design. *Anadolu University Journal of Social Sciences*, 22(Special Issue 2), 213-232.
- Yetkin, Y. (2001). A contemporary approach to the science of biology: The importance of understanding the philosophy and logic of biology. *Anadolu University Journal of Science and Technology*, 2, 231-243.
- Yıldırım, A., Şimşek H. (2016). *Qualitative research methods in social sciences*. Ankara: Seçkin Yayıncılık.
- Yiğit, N., (1998), *The effects of anatomical structures in the phonation system on voice*, (Unpublished PhD Thesis), Gazi University Institute of Science, Ankara.