

Multidisciplinary Approaches In Gynecological Oncology

Editors

İlyas TURAN

Özgür Ozan CEYLAN

Erhan OKUYAN

© Copyright 2025

Printing, broadcasting and sales rights of this book are reserved to Academician Bookstore House Inc. All or parts of this book may not be reproduced, printed or distributed by any means mechanical, electronic, photocopying, magnetic paper and/or other methods without prior written permission of the publisher. Tables, figures and graphics cannot be used for commercial purposes without permission. This book is sold with banderol of Republic of Türkiye Ministry of Culture.

ISBN 978-625-375-859-2 **Page and Cover Design**
Typesetting and Cover Design by Akademisyen

Book Title Multidisciplinary Approaches In Gynecological Oncology **Publisher Certificate Number**
47518

Editors
İlyas TURAN
ORCID iD: 0000-0003-3611-9428
Özgür Ozan CEYLAN
ORCID iD: 0000-0001-5054-8486
Erhan OKUYAN
ORCID iD: 0000-0001-9636-9539

Printing and Binding
Vadi Printingpress

Bisac Code
MED000000

DOI 10.37609/akya.3975
Publishing Coordinator
Yasin DİLMEŃ

Library ID Card

Multidisciplinary Approaches In Gynecological Oncology / ed .İlyas Turan, Özgür Ozan Ceylan. Erhan Okuyan.

Ankara : Akademisyen Yayınevi Kitabevi, 2025.

219 p. : figure, table. ; 160x235 mm.

Includes References.

ISBN 9786253758592

WARNING

The information contained in this product is only presented as a source for licensed medical workers. It should not be used for any professional medical advice or medical diagnosis. It does not constitute a doctor-patient, therapist-patient and / or any other health-presentation service relationship between the Bookstore and the recipient in any way.

This product is not a synonym or a substitute for professional medical decisions. The Academician Bookstore and its affiliated companies, writers, participants, partners and sponsors are not responsible for injuries and / or damage to humans and devices arising from all applications based on product information.

In the case of prescription of drugs or other chemicals, checking over the current product information for each drug defined by the manufacturer to determine the recommended dose, duration, method and contraindications of the drug is recommended.

It is the physician's own responsibility to determine the optimal treatment and dose for the patient, and to establish a basis for the knowledge and experience of the treating physician about the patient.

The Academician Bookstore is not responsible for any changes to the product, repackaging and customizations made by a third party.

GENERAL DISTRIBUTION

Akademisyen Kitabevi AŞ

Halk Sokak 5 / A Yenişehir / Ankara

Tel: 0312 431 16 33

siparis@akademisyen.com

www.akademisyen.com

CONTENTS

Bölüm 1	New Generation Genetic and Immunological Approaches in Gynecological Oncology	1
	<i>Oktay Tuğrul DURSUN</i>	
	<i>Ebru ERDEMOĞLU</i>	
Bölüm 2	Systemic Chemotherapy and Hipec in Gynecologic Malignancies.....	9
	<i>Gülüm Ceren BOZLU</i>	
Bölüm 3	Radiotherapy in Gynecological Oncology.....	33
	<i>Oktay Tuğrul DURSUN</i>	
Bölüm 4	Imaging in Gynecological Cancers.....	47
	<i>Gülden ÖZEK</i>	
Bölüm 5	The Role of Interventional Radiology in Gynecologic Oncology.....	71
	<i>Gülal KARSENAS</i>	
Bölüm 6	Artificial Intelligence in Gynecological Oncology.....	87
	<i>Mulaim SİZER</i>	
Bölüm 7	Lymphedema in Gynecologic Oncology	97
	<i>Elif KANDEMİR EKİNCİ</i>	
	<i>İlyas TURAN</i>	
Bölüm 8	Respiratory Physiotherapy in Gynecologic Oncology Patients.....	107
	<i>Mahmut Dolay YAMAN</i>	
Bölüm 9	Neuropathic Pain in Gynecological Oncology Patients.....	117
	<i>Dorukhan DEMİR</i>	
Bölüm 10	Wound Care in Gynecologic Oncology	125
	<i>Zeynel Umut CANBABA</i>	
	<i>İrem KIRKAN CANBABA</i>	
Bölüm 11	The Role of Bariatric Surgery in Gynecologic Oncology	131
	<i>Zeynel Umut CANBABA</i>	
	<i>İrem KIRKAN CANBABA</i>	
Bölüm 12	Principles of Genital Aesthetic Surgery in Gynecological Oncology	141
	<i>Özgür Ozan CEYLAN</i>	
Bölüm 13	Pain Management, Enhanced Recovery After Surgery (Eras) Protocol, and Intensive Care in Gynecologic Cancer Surgery.....	153
	<i>Melda İŞEVİ</i>	
	<i>Özkul Yılmaz ÇOLAK</i>	

Contents

Bölüm 14	Gynecological Cancers and Exercise.....	175
	<i>Sevgi SELEN</i>	
Bölüm 15	Nutrition And Diet in Gynecological Oncology Patient.....	183
	<i>Nihan Erdoğan ATALAY</i>	
Bölüm 16	Sexual Life in Gynecological Cancer Patients	195
	<i>Asuman DOĞAN BAYRAK</i>	
Bölüm 17	Bone Health in Gynecologic Oncology Patients	205
	<i>Bedirhan ALBAYRAK</i>	

AUTHORS

Editor

Assoc. Prof. Dr. Erhan OKUYAN

Specialist in Obstetrics and Gynecology and Cosmetic Gynecology / Zilan Private Hospital

Bedirhan ALBAYRAK

Samsun Training and Research Hospital

Nihan Erdoğan ATALAY

Bolu İzzet Baysal State Hospital

Asuman DOĞAN BAYRAK

Isparta Şehit Yunus Emre State Hospital

Gülüm Ceren BOZLU

Op. Dr, Isparta Şehir Hastanesi

İrem KIRKAN CANBABA

Res. Asst., General Surgery, Suleyman Demirel University

Zeynel Umut CANBABA

Specialist Doctor, Obstetrics and Gynecology, Isparta City Hospital

Özgür Ozan CEYLAN

Turgutlu State Hospital, Department of Obstetrics and Gynecology

Özkul Yılmaz ÇOLAK

MD, Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Ondokuz Mayıs University Faculty of Medicine

Dorukhan DEMİR

Department of Obstetrics and Gynecology, Burdur State Hospital

Oktay Tuğrul DURSUN

Obstetrics and Gynecology Specialist, Izmir Tepecik Research Hospital

Elif KANDEMİR EKİNCİ

Obstetrics and Gynecology Specialist, Isparta City Hospital

Ebru ERDEMOĞLU

Perinatology Specialist, Isparta City Hospital

Melda İŞEVİ

MD, Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Ondokuz Mayıs University Faculty of Medicine

Gülal KARSENAS

İstinye University Bahçeşehir Liv Hospital

Gülden ÖZEK

MD, İstinye Liv Bahçeşehir Hospital

Sevgi SELEN

Op. Dr., Acıbadem Eskaşehir Hospital

Mulaim SİZER

Specialist, Batman Training and Research Hospital

İlyas TURAN

Gynecologic Oncology Specialist, Batman Training and Research Hospital Department

Mahmut Dolay YAMAN

Obstetrics and Gynecology Department, Golcuk Necati Celik State Hospital

Chapter 1

NEW GENERATION GENETIC AND IMMUNOLOGICAL APPROACHES IN GYNECOLOGICAL ONCOLOGY

Oktay Tuğrul DURSUN¹
Ebru ERDEMOĞLU²

1. INTRODUCTION

Gynecologic malignancies comprising ovarian, endometrial, cervical, vulvar, and vaginal cancers represent a complex group of tumors. Despite advancements in early detection and surgery, advanced and recurrent cases remain major therapeutic challenges, often associated with drug resistance and poor survival outcomes. Over the past decade, the rapid evolution of immunotherapy and genetic therapy has reshaped the treatment paradigm. These approaches leverage the body's immune machinery and exploit molecular aberrations to achieve durable responses. This article reviews and synthesizes recent literature to outline how immunotherapy and genetic therapy are transforming gynecologic oncology, with emphasis on translational mechanisms, clinical outcomes, and future perspectives.

2. IMMUNOTHERAPY IN GYNECOLOGIC CANCERS

The Rationale for Immunotherapy: Gynecologic tumors, particularly endometrial and cervical cancers, exhibit immunogenic properties high tumor mutational burden (TMB), viral antigen expression (e.g., HPV), and immune cell infiltration. Such features render them ideal candidates for immune-targeting therapies. **Checkpoint Inhibitors:** PD-1/PD-L1 and CTLA-4 Pathways: The PD-1/PD-L1 axis remains the most extensively explored target. Checkpoint inhibitors unleash cytotoxic T cells that were previously suppressed by tumor-induced immune checkpoints.

¹ Obstetrics and Gynecology Specialist, Izmir Tepecik Research Hospital, oktaytugruldursun@gmail.com, ORCID iD: 0009-0008-8017-5025

² Perinatology Specialist, Isparta City Hospital, ebru.md@hotmail.com, ORCID iD: 0000-0003-2677-1236

deliver equitable precision oncology worldwide. In recent years, gynecologic oncology has undergone a profound transition driven by parallel advances in immunotherapy and genetic engineering. Accumulating evidence from 2023–2025 demonstrates that immune checkpoint inhibition, adoptive cell transfer, neoantigen-based vaccination, and gene-editing platforms such as CRISPR-Cas9 are reshaping therapeutic expectations for ovarian, endometrial, cervical, vulvar, and vaginal cancers. In particular, the integration of PD-1/PD-L1 blockade into the management of mismatch repair-deficient and HPV-associated tumors have resulted in clinically meaningful improvements in survival, while adoptive T-cell strategies including TILs, CAR-T, and CAR-NK therapies—provide durable responses in otherwise refractory disease. Genetic therapies continue to expand the therapeutic armamentarium through precision manipulation of oncogenic pathways, DNA repair defects, and immune-resistance mechanisms. CRISPR-enabled T-cell modification, RNA interference technologies, and next-generation PARP inhibitors illustrate how genomic interventions can synergize with immune-based therapies. Furthermore, advances in artificial intelligence, multi-omics profiling, and computational modeling have accelerated biomarker discovery, patient stratification, and the rational design of combination regimens. Despite these achievements, several challenges remain. Immune escape, limited tumor antigenicity, off-target genetic effects, treatment-related toxicities, and inequitable global access continue to constrain widespread implementation. As gynecologic oncology moves toward an era of immunogenomic convergence, overcoming these barriers will require sustained innovation, rigorous clinical validation, and improved integration of molecular diagnostics in routine care. Overall, the convergence of immunotherapy and genetic engineering heralds a new paradigm in the management of gynecologic malignancies. If current trajectories continue, these transformative strategies have the potential not only to extend survival but also to redefine advanced gynecologic cancers as manageable chronic conditions within the coming decade.

REFERENCES

1. Nemunaitis, J., et al., Clonal neoantigen: Emerging “mechanism-based” biomarker of immunotherapy response. *Cancers*, 2023. 15(23): p. 5616.
2. Alvarez Secord, A., et al., Genomic Alterations, Molecularly Targeted Therapy, and Survival: A Real-World Endometrial Cancer Molecularly Targeted Therapy Consortium Cohort Study.
3. Brenner, S., et al., Endometrial cancer survival outcomes by mismatch repair status in a diverse cohort. *Gynecologic Oncology*, 2025. 200: p. 131-132.
4. Zafar, M., et al., Advances and Challenges in the Treatment of HPV-Associated Lower Genital Tract Cancers by Immune Checkpoint Blockers: Insights from Basic and Clinical Science. *Cancers*, 2025. 17(8): p. 1260.

5. Rimel, B., et al., Phase 3 Clinical Trials Evaluating Poly (ADP-Ribose) Polymerase Inhibition Plus Immunotherapy for First-Line Treatment of Advanced Ovarian Cancer. *The oncologist*, 2025: p. oyaf270.
6. Qiu, K., et al., mRNA-LNP vaccination-based immunotherapy augments CD8+ T cell responses against HPV-positive oropharyngeal cancer. *npj Vaccines*, 2023. 8(1): p. 144.
7. Wang, Y., et al., Combination of Anti-PD-1 and Electroacupuncture Induces a Potent Antitumor Immune Response in Microsatellite-Stable Colorectal Cancer. *Cancer immunology research*, 2024. 12(1): p. 26-35.
8. Santin, A.D., et al., Efficacy and safety of sacituzumab govitecan in patients with advanced solid tumors (TROPiCS-03): analysis in patients with advanced endometrial cancer. *Journal of Clinical Oncology*, 2024. 42(29): p. 3421-3429.
9. Yang, Y., et al., A new approach to the treatment of ovarian cancer: the application of CAR-T cell therapy. *Critical Reviews in Oncology/Hematology*, 2025: p. 104785.
10. Kumar, A., et al., Personalized cancer vaccine design using AI-powered technologies. *Frontiers in Immunology*, 2024. 15: p. 1357217.
11. Monk, B.J., et al., ATHENA (GOG-3020/ENGOT-ov45): A randomized, phase III trial to evaluate rucaparib as monotherapy (ATHENA-MONO) and rucaparib in combination with nivolumab (ATHENA-COMBO) as maintenance treatment following frontline platinum-based chemotherapy in ovarian cancer. *International Journal of Gynecological Cancer*, 2021. 31(12): p. ijgc-2021-002933.
12. Zeng, J., J. Luo, and Y. Zeng, Cancer gene therapy: historical perspectives, current applications, and future directions. *Functional & Integrative Genomics*, 2025. 25(1): p. 200.
13. Tarsounas, M. and P. Sung, The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. *Nature Reviews Molecular Cell Biology*, 2020. 21(5): p. 284-299.
14. Kalafati, E., et al., Developing oncolytic viruses for the treatment of cervical cancer. *Cells*, 2023. 12(14): p. 1838.
15. Mishra, Y., et al., Aptamers versus vascular endothelial growth factor (VEGF): a new battle against ovarian cancer. *Pharmaceuticals*, 2023. 16(6): p. 849.
16. Beg, A.A. and J.E. Gray, HDAC inhibitors with PD-1 blockade: a promising strategy for treatment of multiple cancer types? 2016, Taylor & Francis. p. 1015-1017.
17. Brenner, J., et al., Synthetic biology: immunotherapy by design. *Annual review of biomedical engineering*, 2018. 20(1): p. 95-118.
18. Ren, F., et al., Single-cell transcriptome profiles the heterogeneity of tumor cells and microenvironments for different pathological endometrial cancer and identifies specific sensitive drugs. *Cell Death & Disease*, 2024. 15(8): p. 571.
19. Paiboonborirak, C., N.R. Abu-Rustum, and S. Wilailak, Artificial intelligence in the diagnosis and management of gynecologic cancer. *International Journal of Gynecology & Obstetrics*, 2025. 171: p. 199-209.

Chapter 2

SYSTEMIC CHEMOTHERAPY AND HIPEC IN GYNECOLOGIC MALIGNANCIES

Gülüm Ceren BOZLU¹

1. INTRODUCTION

Gynecologic malignancies represent one of the most significant oncologic challenges affecting women's health worldwide, with mortality rates remaining particularly high in ovarian and cervical cancers. Epithelial ovarian cancer, characterized by a marked propensity for peritoneal dissemination, has seen the development of a comprehensive therapeutic approach through the incorporation of primary cytoreductive surgery, systemic chemotherapy and in selected cases, intraoperative hyperthermic intraperitoneal chemotherapy (HIPEC), which collectively enhance survival and modify recurrence patterns. Similarly, in endometrial cancer, cervical cancer, and rare gynecologic sarcomas, the role of chemotherapy within the broader treatment algorithm has become increasingly well defined, with growing emphasis on optimal sequencing of chemotherapy and radiotherapy, as well as combination strategies incorporating targeted therapies and immunotherapeutic agents (1,2).

This chapter will examine the fundamental principles of chemotherapy in gynecologic cancers, including indications, regimen selection criteria, and pharmacologic dynamics. It will then provide an in-depth analysis of the pharmacologic, physiologic, and clinical foundations of HIPEC, its evidence-based indications, and the practical aspects of its use across gynecologic malignancies.

¹ Op. Dr, Isparta Şehir Hastanesi, ogurceren@gmail.com, ORCID iD: 0000-0002-3094-8703

CONCLUSION

Chemotherapy constitutes an indispensable component of systemic management in gynecologic malignancies, serving both curative and palliative purposes within treatment plans tailored to tumor biology, molecular subtype, and disease stage. In tumors with a proclivity for peritoneal dissemination, most notably epithelial ovarian cancer, platinum-taxane-based regimens have become central determinants of survival. In contrast, systemic treatment strategies for endometrial, cervical, vulvar, and vaginal cancers are shaped according to their distinct histological and molecular characteristics and are guided by established clinical practice guidelines.

HIPEC has emerged as an intensified regional therapeutic modality that complements cytoreductive surgery in selected gynecologic cancers with peritoneal involvement. Its most evidence-supported application is in FIGO stage III epithelial ovarian cancer undergoing interval cytoreduction after neoadjuvant chemotherapy, where HIPEC has demonstrated meaningful survival benefit and has become a guideline-endorsed option. In other gynecologic tumor types, the role of HIPEC remains more restricted and requires meticulous patient selection and multidisciplinary decision-making.

Overall, the evidence based and judicious integration of chemotherapy and HIPEC together with optimal cytoreductive surgery contributes to improved long term disease control. As treatment algorithms increasingly incorporate molecular classification, targeted therapies, and immunotherapy, this combined approach provides an important strategic framework in modern gynecologic oncology, where precision and individualized care continue to advance.

REFERENCES

1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. *CA Cancer J Clin.* 2018 Jul;68(4):284–96.
2. van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. *N Engl J Med.* 2018 Jan 18;378(3):230–40.
3. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. *J Pathol.* 2005 Jan;205(2):275–92.
4. González-Martín A, Harter P, Leary A, Lorusso D, Miller RE, Pothuri B, et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. *Annals of Oncology.* 2023 Oct ;34(10):833–48.
5. Schwab CL, English DP, Roque DM, Santin AD. Taxanes: their impact on gynecologic malignancy. *Anticancer Drugs.* 2014 Jun 1;25(5):522–35.
6. Katsumata N, Yasuda M, Takahashi F, Isonishi S, Jobo T, Aoki D, et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. *The Lancet.* 2009;374(9698):1331–8.

7. Cancer O. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) NCCN.org NCCN Guidelines for Patients[®] available at www.nccn.org/patients.
8. Nicole McMillian N, Vaishnavi Sambandam M, Gaillard S, Hopkins Kimmel Cancer Center Robert Giuntoli JI, Glaser S, Howitt BE, et al. NCCN Guidelines Version 2.2026 Uterine Neoplasms.
9. Ledermann J, Matias-Guiu X, Amant F, Concin N, Davidson B, Fotopoulou C, et al. ESGO-ESMO-ESP consensus conference recommendations on ovarian cancer: pathology and molecular biology and early, advanced and recurrent disease²⁰⁰⁶; *Annals of Oncology*. 2024;35:248–66.
10. Vergote I, Tropé CG, Amant F, Kristensen GB, Ehlen T, Johnson N, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. *N Engl J Med*. 2010 Sep 2;363(10):943–53.
11. Gershenson DM, Miller A, Brady WE, Paul J, Carty K, Rodgers W, et al. Trametinib versus standard of care in patients with recurrent low-grade serous ovarian cancer (GOG 281/LOGS): an international, randomised, open-label, multicentre, phase 2/3 trial. *The Lancet*. 2022 Feb 5;399(10324):541–53.
12. Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical Characteristics of Clear Cell Carcinoma of the Ovary A Distinct Histologic Type with Poor Prognosis and Resistance to Platinum-Based Chemotherapy BACKGROUND. A retrospective review of treatment results comparing women with.
13. Perren TJ. Mucinous epithelial ovarian carcinoma. *Annals of Oncology*. 2016 Apr 1;27:53–7.
14. Concin N, Matias-Guiu X, Cibula D, Colombo N, Creutzberg CL, Ledermann J, et al. ESGO-ESTRO-ESP guidelines for the management of patients with endometrial carcinoma: update 2025. *Lancet Oncol*. 2025 Aug 1;26(8):e423–35.
15. Kopatsaris S, Tsakiridis I, Kapetanios G, Zachomitros F, Michos G, Papanikolaou E, et al. Management of Endometrial Cancer: A Comparative Review of Guidelines. *Cancers (Basel)*. 2024 Nov 1;16(21).
16. de Boer SM, Powell ME, Mileskin L, Katsaros D, Bessette P, Haie-Meder C, et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): final results of an international, open-label, multicentre, randomised, phase 3 trial. *Lancet Oncol*. 2018 Mar 1;19(3):295–309.
17. de Boer SM, Powell ME, Mileskin L, Katsaros D, Bessette P, Haie-Meder C, et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial. *Lancet Oncol*. 2019 Sep 1;20(9):1273–85.
18. GOG 258 Final Results: No Improvement in Survival by Adding Radiotherapy to Chemotherapy in Advanced Endometrial Cancer - The ASCO Post.
19. Matei DE, Enserro DM, Randall ME, Mutch D, Small W, Disilvestro PA, et al. Long-Term Follow-Up and Overall Survival in NRG258, a Randomized Phase III Trial of Chemoradiation Versus Chemotherapy for Locally Advanced Endometrial Carcinoma. *Journal of Clinical Oncology*. 2025 Mar 20.
20. Miller DS, Filiaci VL, Mannel RS, Cohn DE, Matsumoto T, Tewari KS, et al. Carboplatin and Paclitaxel for Advanced Endometrial Cancer: Final Overall Survival and Adverse Event Analysis of a Phase III Trial (NRG Oncology/GOG0209). *J Clin Oncol*. 2020 Nov 20;38(33):3841–50.
21. Casali PG, Abecassis N, Bauer S, Biagini R, Bielack S, Bonvalot S, et al. Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*. 2018 Oct 1.
22. Pérez-Fidalgo JA, Ortega E, Ponce J, Redondo A, Sevilla I, Valverde C, et al. Uterine sarcomas: clinical practice guidelines for diagnosis, treatment, and follow-up, by Spanish group for research on sarcomas (GEIS). *Ther Adv Med Oncol*. 2023 Jan 1;15:17588359231157644.

23. Seagle BLL, Shilpi A, Buchanan S, Goodman C, Shahabi S. Low-grade and high-grade endometrial stromal sarcoma: A National Cancer Database study. *Gynecol Oncol.* 2017 Aug 1;146(2):254–62.
24. Powell MA, Filiaci VL, Hensley ML, Huang HQ, Moore KN, Tewari KS, et al. Randomized Phase III Trial of Paclitaxel and Carboplatin Versus Paclitaxel and Ifosfamide in Patients With Carcinosarcoma of the Uterus or Ovary: An NRG Oncology Trial. *Journal of Clinical Oncology.* 2022 Mar 20;40(9):968.
25. Abu-Rustum NR, Yashar CM, Arend R, Barber E, Bradley K, Brooks R, et al. NCCN Guidelines® Insights: Cervical Cancer, Version 1.2024: Featured Updates to the NCCN Guidelines. *Journal of the National Comprehensive Cancer Network.* 2023 Dec 1;21(12):1224–33.
26. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology.* 2017;28:iv72–83.
27. Cibula D, Raspollini MR, Planchamp F, Centeno C, Chargari C, Felix A, et al. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer - Update 2023*. *International Journal of Gynecological Cancer.* 2023 May 1;33(5):649–66.
28. Cibula D, Pötter R, Planchamp F, Avall-Lundqvist E, Fischerova D, Haie Meder C, et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. *International Journal of Gynecological Cancer.* 2018 May 1;28(4):641–55.
29. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent Cisplatin-Based Radiotherapy and Chemotherapy for Locally Advanced Cervical Cancer. *New England Journal of Medicine.* 1999 Apr 15;340(15):1144–53.
30. Neibart SS, Lin LL, Einstein MH, Teoh D, Leath III CA, Chino J. Minimum standards for radiation therapy in the treatment of cervical cancer in the U.S.: A consensus statement by SGO, ASTRO, and ABS addressing the WHO Cervical Cancer Elimination Campaign goals. *Gynecol Oncol.* 2025;200:180–5.
31. Koh SB. The ideal strategies of chemotherapy for the treatment of cervical cancer. *Kosin Medical Journal.* 2018 Dec 31;33(3):283–8.
32. Manso L, Ramchandani-Vaswani A, Romero I, Sánchez-Lorenzo L, Bermejo-Pérez MJ, Estévez-García P, et al. SEOM-GEICO Clinical Guidelines on cervical cancer (2023). *Clinical & Translational Oncology.* 2024 Nov 1;26(11):2771.
33. McCormack M, Eminowicz G, Gallardo D, Diez P, Farrelly L, Kent C, et al. Induction chemotherapy followed by standard chemoradiotherapy versus standard chemoradiotherapy alone in patients with locally advanced cervical cancer (GCIG INTERLACE): an international, multi-centre, randomised phase 3 trial. *The Lancet.* 2024 Oct 19;404(10462):1525–35.
34. Gennigens C, Jerusalem G, Lapaille L, De Cuypere M, Strelle S, Kridelka F, et al. Recurrent or primary metastatic cervical cancer: current and future treatments. *ESMO Open.* 2022 Oct 1;7(5):100579.
35. Tewari KS, Sill MW, Long HJ, Penson RT, Huang H, Ramondetta LM, et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. *New England Journal of Medicine.* 2014 Feb 20;370(8):734–43.
36. Tinker A V, Fiorino L, O'Dwyer H, Kumar A. Bevacizumab in Metastatic, Recurrent, or Persistent Cervical Cancer: The BC Cancer Experience. *International Journal of Gynecological Cancer.* 2018 Oct 1;28(8):1592–9.
37. Monk BJ, Colombo N, Tewari KS, Dubot C, Caceres MV, Hasegawa K, et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. *J Clin Oncol.* 2023 Dec 20;41(36):5505–11.

Systemic Chemotherapy and Hipec in Gynecologic Malignancies

38. Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira-Frommer R, et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. *New England Journal of Medicine*. 2021 Nov 11;385(20):1856–67.
39. Gaillard S, Hopkins Kimmel Cancer Center Robert Giuntoli JI, Glaser S, Howitt BE, Kendra K, Landrum L, et al. NCCN Guidelines Version 2.2026 Cervical Cancer. 2025
40. Abu-Rustum NR, Yashar CM, Arend R, Barber E, Bradley K, Brooks R, et al. Vulvar Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. *Journal of the National Comprehensive Cancer Network*. 2024 Mar 1;22(2):117–35.
41. Oonk MHM, Planchamp F, Baldwin P, Mahner S, Mirza MR, Fischerová D, et al. European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer - Update 2023. *International Journal of Gynecological Cancer*. 2023 Jul 1;33(7):1023.
42. Malignant Vulvar Lesions: Overview, Melanoma, Paget Disease. Available from: https://emedicine.medscape.com/article/264898-overview?utm_source
43. Mutch D, Nagel C, Nekhlyudov L, Fader AN, Remmenga SW, Reynolds R Kevin, et al. Clinical Practice Guidelines in Oncology NCCN Categories of Evidence and Consensus. *JNCCN-Journal of the National Comprehensive Cancer Network*]. 2017;15(1):92–120.
44. Mazzotta M, Pizzuti L, Krasniqi E, Lisa FS Di, Cappuzzo F, Landi L, et al. Role of Chemotherapy in Vulvar Cancers: Time to Rethink Standard of Care? *Cancers* 2021, Vol 13. 2021 Aug 12;13(16).
45. Pérez JC, Salgado AC, Pérez-Mies B, Rullán JAD, Ajuria-Illarramendi O, Alia EMG, et al. Extramammary Paget Disease: a Therapeutic Challenge, for a Rare Entity. *Curr Oncol Rep*. 2023 Oct 1;25(10):1081–94.
46. Caruso G, Barcellini A, Mazzeo R, Gallo R, Vitale MG, Passarelli A, et al. Vulvar Paget's Disease: A Systematic Review of the MITO Rare Cancer Group. *Cancers* 2023, Vol 15,. 2023 Mar 16;15(6).
47. Nout RA, Calaminus G, Planchamp F, Chargari C, Lax S, Martelli H, et al. ESTRO/ESGO/SIOPe Guidelines for the management of patients with vaginal cancer. *International Journal of Gynecological Cancer*. 2023 Aug;33(8):1185–202.
48. Nicole McMillian N, Vaishnavi Sambandam M, Gaillard S, Hopkins Kimmel Cancer Center Robert Giuntoli JI, Glaser S, Howitt BE, et al. NCCN Guidelines Version 1.2026 Vaginal Cancer. 2025.
49. Kirschner AN, Kidd EA, DeWees T, Perkins SM. Treatment approach and outcomes of vaginal melanoma. *International Journal of Gynecological Cancer* [Internet]. 2013;23(8):1484–9.
50. van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. *N Engl J Med*. 2018 Jan 18;378(3):230–40.
51. Ghirardi V, Trozzi R, Giudice E, Scambia G, Fagotti A. Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in the Management of Advanced Ovarian Cancer. A Literature Review. *Eur J Gynaecol Oncol* 2022;43(2):335–40.
52. Tsuyoshi H, Inoue D, Kurokawa T, Yoshida Y. Hyperthermic intraperitoneal chemotherapy (HIPEC) for gynecological cancer. *J Obstet Gynaecol Res*. 2020 Sep 1; 46(9):1661–71.
53. MargiouliaSiarkou C, Almperiis A, Papanikolaou A, Lagana AS, Mavromatidis G, Guyon F, et al. HIPEC for gynaecological malignancies: A last update (Review). *Medicine International*. 2023 May 4;3(3):1–9.
54. Bhatt A, Glehen O, Zivanovic O, Brennan D, Nadeau C, Van Driel W, et al. The 2022 PSOGI International Consensus on HIPEC Regimens for Peritoneal Malignancies: Epithelial Ovarian Cancer. *Ann Surg Oncol*. 2023 Dec 1;30(13):8115–37.
55. Chambers LM, Costales AB, Crean-Tate K, Kuznicki M, Morton M, Horowitz M, et al. A guide to establishing a hyperthermic intraperitoneal chemotherapy program in gynecologic oncology. *Gynecol Oncol*. 2020;158:794–802.

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

56. Chicago. The Chicago Consensus on Peritoneal Surface Malignancies: Management of Ovarian Neoplasms; doi.org/10.1245/s10434-020-08322-y
57. Piątek S, Sarnowska E, Kacperczyk-Bartnik J, Kołaczkowska H, Sobczewski P, Bidziński M. Discrepancy between recommendations regarding hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer management: a narrative review. Chin Clin Oncol. 2024 Jun 30;13(3):37–37.
58. Bogani G, Fagotti A, Chiantera V, De Iaco P, Vizza E, Scollo P, et al. The role of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer. Gynecol Oncol. 2025 Sep ;200:161–8.
59. Cornali T, Spiliotis J, Biacchi D, Kopanakis N, Sollazzo BM, Christopoulou A, et al. Peritoneal metastases from endometrial cancer treated with cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC): A report on 33 patients. European Journal of Surgical Oncology. 2018 Oct 1

Chapter 3

RADIOTHERAPY IN GYNECOLOGICAL ONCOLOGY

Oktay Tuğrul DURSUN¹

1. INTRODUCTION

Gynecological cancers including cervical, endometrial, vulvar, and vaginal malignancies represent a significant fraction of global cancer incidence and morbidity in women. Despite advances in surgical techniques and systemic therapies, radiotherapy remains a cornerstone in their multidisciplinary management. Historically among the first malignancies to be treated with ionizing radiation, gynecologic tumors continue to demand precise and evolving radiotherapeutic strategies to improve outcomes while minimizing toxicity [1].

Radiotherapy is utilized in various settings: as definitive treatment particularly for locally advanced disease; as an adjuvant modality following surgery; in combination with chemotherapy; and for palliation in advanced or recurrent cases. Recent technological advances such as intensity-modulated radiotherapy (IMRT), image-guided external beam radiation, stereotactic body radiotherapy (SBRT), and modern brachytherapy (including image-guided brachytherapy and MR-guided techniques) have enhanced the ability to deliver high doses to tumors with more conformal dose distribution, better sparing of normal tissues, and improved local control [2].

Moreover, new paradigms are emerging: the integration of systemic therapies with radiotherapy, immunotherapy, and biomarkers to guide personalized treatment; the application of stereotactic ablative radiotherapy (SABR) in oligometastatic or oligopressive disease; and intraoperative radiotherapy in selected cases. These innovations offer promise for improving survival, reducing side effects, and maintaining quality of life [3].

Nonetheless, challenges remain. These include defining optimal timing and sequencing, dose constraints for organs at risk, adapting to individual tumor

¹ Obstetrics and Gynecology Specialist, Izmir Tepecik Research Hospital, oktaytugruldursun@gmail.com,
ORCID iD: 0009-0008-8017-5025

REFERENCES

1. Ozer, E.E., et al., Comparison of point a based plans with clinical target volume-based three-dimensional plans using dose-volume parameters in small lesion of cervical cancer brachytherapy. *European Journal of Gynaecological Oncology*, 2021. 42(5).
2. Pagano, F., et al., Intraoperative Radiation Therapy for Gynecologic Malignancies: When Is It Indicated? *Cancers*, 2025. 17(7): p. 1240.
3. Donovan, E.K., et al., Stereotactic Ablative Radiotherapy for Gynecological Oligometastatic and Oligopressive Tumors. *JAMA Oncology*, 2024. 10(7): p. 941-948.
4. Mayadev, J.S., et al., Global challenges of radiotherapy for the treatment of locally advanced cervical cancer. *Int J Gynecol Cancer*, 2022. 32(3): p. 436-445.
5. Olawaiye, A.B., et al., The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. *CA: a cancer journal for clinicians*, 2021. 71(4): p. 287-298.
6. Bhatla, N., et al., Cancer of the cervix uteri. *International journal of gynecology & obstetrics*, 2018. 143: p. 22-36.
7. Mayadev, J., et al., Underutilization of brachytherapy and disparities in survival for patients with cervical cancer in California. *Gynecologic oncology*, 2018. 150(1): p. 73-78.
8. Shrivastava, S., et al., Cisplatin chemoradiotherapy vs radiotherapy in FIGO stage IIIB squamous cell carcinoma of the uterine cervix: a randomized clinical trial. *JAMA oncology*, 2018. 4(4): p. 506-513.
9. Chiew, K.L., et al., Assessing guideline adherence and patient outcomes in cervical cancer. *Asia pacific Journal of Clinical Oncology*, 2017. 13(5): p. e373-e380.
10. Management of Cervical Cancer: Strategies for Limited-resource Centres - A Guide for Radiation Oncologists. 2013, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY.
11. Shrivastava, S.K., U. Mahantshetty, and K. Narayan, Principles of radiation therapy in low-resource and well-developed settings, with particular reference to cervical cancer. *International Journal of Gynecology & Obstetrics*, 2015. 131: p. S153-S158.
12. Suneja, G., et al., American Brachytherapy Society: Brachytherapy treatment recommendations for locally advanced cervix cancer for low-income and middle-income countries. *Brachytherapy*, 2017. 16(1): p. 85-94.
13. Chopra, S.J., et al., National cancer grid of India consensus guidelines on the management of cervical cancer. *Journal of global oncology*, 2018. 4: p. 1-15.
14. Oonk, M.H.M., et al., European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer - Update 2023. *Int J Gynecol Cancer*, 2023. 33(7): p. 1023-1043.
15. Nout, R.A., et al., ESTRO/ESGO/SIOPe Guidelines for the management of patients with vaginal cancer. *International Journal of Gynecological Cancer*, 2023. 33(8): p. 1185-1202.
16. Abu-Rustum, N.R., et al., Vulvar Cancer, Version 3.2024, NCCN Clinical Practice Guidelines in Oncology. *Journal of the National Comprehensive Cancer Network*, 2024. 22(2): p. 117-135.
17. Oonk, M.H.M., et al., Radiotherapy Versus Inguinofemoral Lymphadenectomy as Treatment for Vulvar Cancer Patients With Micrometastases in the Sentinel Node: Results of GROINSS-V II. *Journal of Clinical Oncology*, 2021. 39(32): p. 3623-3632.
18. Horowitz, N.S., et al., Phase II Trial of Cisplatin, Gemcitabine, and Intensity-Modulated Radiation Therapy for Locally Advanced Vulvar Squamous Cell Carcinoma: NRG Oncology/GOG Study 279. *J Clin Oncol*, 2024. 42(16): p. 1914-1921.
19. Huang, C.C., et al., Recent advances in gynecologic radiation oncology. *Cancer*, 2025. 131(9): p. e35888.
20. Proppe, L., et al., Systematic review-Adjuvant radiotherapy of the vulva in primary vulvar cancer. *Gynecologic Oncology*, 2024. 190: p. 264-271.

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

21. Shen, J., et al., Abdominopelvic lymphatic drainage area irradiation for consolidative radiotherapy of advanced ovarian carcinoma: analysis of clinical application efficacy and dosimetric verification. *World Journal of Oncology*, 2022. 13(3): p. 145.
22. Shen, J., et al., Clinical application of radiotherapy in patients with oligometastatic ovarian cancer: a sharp tool to prolong the interval of systemic treatment. *Discover Oncology*, 2022. 13(1): p. 82.
23. Lee, B.M., et al., Radiotherapy in recurrent ovarian cancer: updated results of involved-field radiation therapy. *International Journal of Gynecological Cancer*, 2023. 33(7): p. 1106-1111.
24. Zhuang, Y. and H. Yang, The Significance of Radiotherapy in Ovarian Clear Cell Carcinoma: A Systematic Review and Meta-Analysis. *Cancer Control*, 2023. 30: p. 10732748231179291.
25. Huck, C., et al., SBRT in recurrent oligometastatic ovarian cancer: An EORTC Y-ECI GCG systematic review. *Clin Transl Radiat Oncol*, 2025. 53: p. 100981.
26. Kopatsaris, S., et al., Management of Endometrial Cancer: A Comparative Review of Guidelines. *Cancers (Basel)*, 2024. 16(21).
27. Harkenrider, M.M., et al., Radiation Therapy for Endometrial Cancer: An American Society for Radiation Oncology Clinical Practice Guideline. *Practical Radiation Oncology*, 2023. 13(1): p. 41-65.
28. Institute, N.C., Endometrial cancer treatment (PDQ®): health professional version. 2002.
29. Cao, X., et al., Guidelines for radiation therapy for endometrial cancer by Brachytherapy Committee of China Anti-Cancer Association (V 2025.1). *Holistic Integrative Oncology*, 2025. 4(1): p. 53.
30. van den Heerik, A.S.V.M., et al., Vaginal brachytherapy management of stage I and II endometrial cancer. *International Journal of Gynecological Cancer*, 2022. 32(3): p. 304-310.
31. Meyer, L.A., et al., Postoperative radiation therapy for endometrial cancer: American Society of Clinical Oncology clinical practice guideline endorsement of the American Society for Radiation Oncology evidence-based guideline. *Journal of Clinical Oncology*, 2015. 33(26): p. 2908-2913.
32. Ricotta, G., et al., Endometrial Stromal Sarcoma: An Update. *Cancers*, 2025. 17(11): p. 1893.
33. Hou, H.L., et al., The prognosis factor of adjuvant radiation therapy after surgery in uterine sarcomas. *Onco Targets Ther*, 2015. 8: p. 2339-44.
34. Hao, Z. and S. Yang, The role of postoperative radiotherapy in patients with uterine sarcomas: A PSM-IPTW analysis based on SEER database. *Frontiers in Surgery*, 2022. 9: p. 985654.
35. Ray-Coquard, I., et al., ESGO/EURACAN/GCIG guidelines for the management of patients with uterine sarcomas. *International Journal of Gynecological Cancer*, 2024. 34(10): p. 1499-1521.
36. Yilmaz, U., et al., Adjuvant radiotherapy for uterine carcinosarcoma: A retrospective assessment of treatment outcomes. *Journal of Cancer Research and Therapeutics*, 2019. 15(6): p. 1377-1382.

Chapter 4

IMAGING IN GYNECOLOGICAL CANCERS

Gülden ÖZEK¹

1. INTRODUCTION

Gynecological cancers, including malignancies of the cervix, endometrium, ovary, vulva, and vagina, represent a significant global public health concern and substantially impact women's quality of life. Current demographic and epidemiological data suggest that both the incidence and mortality rates of gynecological cancers are projected to rise considerably over the next two decades. These findings highlight the urgent need for timely and effective interventions to combat these malignancies (1).

Accurate diagnosis, staging, treatment planning, and monitoring of therapeutic response in gynecological cancers rely heavily on imaging modalities. Radiological imaging techniques play a critical role not only in assessing anatomical structures but also, in light of recent technological advances, in the functional and cellular-level characterization of tumors, thereby significantly informing clinical decision-making processes (2).

2. CONVENTIONAL IMAGING TECHNIQUES IN GYNECOLOGIC MALIGNANCIES

2.1. Ultrasound:

Ultrasound, an imaging technique that generates images using high-frequency sound waves, is generally the first-line diagnostic method in gynecological assessments. The absence of ionizing radiation, ease and widespread availability, and cost-effectiveness are among its major advantages. However, the inability of ultrasonic waves to penetrate bone and air limits its application. In addition, it is an operator-dependent modality, and variations in the level of experience among practitioners may lead to diagnostic discrepancies (3). Additionally, the patient's

¹ MD, Istinye Liv Bahcesehir Hospital, guldenozek@gmail.com, ORCID iD: 0009-0005-4038-6985

REFERENCES

1. Zhu Y, Liu Y, Wang H, et al. Global burden of gynaecological cancers in 2022 and projections to 2050. *J Glob Health.* 2024;14:04155. doi:10.7189/jogh.14.04155
2. Singh D, Vignat J, Lorenzoni V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. *Lancet Glob Health.* 2023;11(2):e197–e206. doi:10.1016/S2214-109X(22)00501-0
3. Zander D, Hüske S, Hoffmann B, Cui XW, Dong Y, Lim A, et al. Ultrasound image optimization (“knobology”): B-mode. *Ultrasound Int Open.* 2020;6(1):E14–E24. doi:10.1055/a-1223-1134
4. Fischerova D, Cibula D. Ultrasound in gynecological cancer: is it time for re-evaluation of its uses? *Curr Oncol Rep.* 2015;17(6):28. doi:10.1007/s11912-015-0449-x
5. Chu LC, Coquia SF, Hamper UM. Ultrasonography evaluation of pelvic masses. *Radiol Clin North Am.* 2014;52(6):1237–1252. doi:10.1016/j.rcl.2014.07.012
6. Arleo EK, Schwartz PE, Hui P, et al. Review of leiomyoma variants. *AJR Am J Roentgenol.* 2015;205(4):912–921. doi:10.2214/AJR.14.14252
7. Miccò M, Sala E, Lakhman Y, et al. Imaging features of uncommon gynecologic cancers. *AJR Am J Roentgenol.* 2015;205(6):1346–1359. doi:10.2214/AJR.15.14486
8. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *CA Cancer J Clin.* 2012;62(1):10–29. doi:10.3322/caac.20138
9. Epstein E, Skoog L, Isberg PE, et al. An algorithm including results of gray-scale and power Doppler ultrasound examination to predict endometrial malignancy in women with postmenopausal bleeding. *Ultrasound Obstet Gynecol.* 2002;20(4):370–376. doi:10.1046/j.1469-0705.2002.00810.x
10. Polopskiene G, Sladkevicius P, Valentin L. Prediction of endometrial malignancy in women with postmenopausal bleeding and sonographic endometrial thickness 4.5 mm. *Ultrasound Obstet Gynecol.* 2011;37(2):232–240. doi:10.1002/uog.8817
11. Nalaboff KM, Pellerito JS, Ben-Levi E. Imaging the endometrium: disease and normal variants. *Radiographics.* 2001;21(6):1409–1424. doi:10.1148/radiographics.21.6.g01nv111409
12. Kaveh M, Sadegi K, Salarzai M, Parooei F. Comparison of diagnostic accuracy of saline infusion sonohysterography, transvaginal sonography, and hysteroscopy in evaluating the endometrial polyps in women with abnormal uterine bleeding: a systematic review and meta-analysis. *VideoSurgery MiniInv.* 2020;15(4):639–648. doi:10.5114/wiitm.2020.93791
13. Green RW, Epstein E. Dynamic contrast-enhanced ultrasound improves diagnostic performance in endometrial cancer staging. *Ultrasound Obstet Gynecol.* 2020;56(1):96–105. doi:10.1002/uog.21954
14. Wildenberg JC, Yam BL, Langer JE, et al. US of the nongravid cervix with multimodality imaging correlation: normal appearance, pathologic conditions, and diagnostic pitfalls. *Radiographics.* 2016;36(2):596–617. doi:10.1148/rg.2016150112
15. Testa AC, Ludovisi M, Manfredi R, et al. Transvaginal ultrasonography and magnetic resonance imaging for assessment of presence, size and extent of invasive cervical cancer. *Ultrasound Obstet Gynecol.* 2009;34(3):335–344. doi:10.1002/uog.6450
16. Sayasneh A, Ekechi C, Ferrara L, Kaijser J, Stalder C, Sur S. The characteristic ultrasound features of specific types of ovarian pathology. *Int J Oncol.* 2015;46(2):445–458. doi:10.3892/ijo.2014.2752
17. Murotsuki J. Contrast-enhanced ultrasound in obstetrics and gynecology. *Donald Sch J Ultrasound Obstet Gynecol.* 2007;1:16–19.
18. Basha MAA, Metwally MI, Gamil SA, et al. Comparison of O-RADS, GI-RADS, and IOTA simple rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses. *Eur Radiol.* 2021;31(2):674–684. doi:10.1007/s00330-020-07105-3

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

19. Timmerman D, Ameye L, Fischerova D, et al. Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. *BMJ*. 2010;341:c6839. doi:10.1136/bmj.c6839
20. Andreotti RF, Timmerman D, Strachowski LM, et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. *Radiology*. 2020;294(1):168–185. doi:10.1148/radiol.2019191150
21. Miccò M, Sala E, Lakhman Y, Hricak H, Vargas HA. Role of imaging in the pretreatment evaluation of common gynecological cancers. *Womens Health (Lond)*. 2014;10(3):299–319. doi:10.2217/whe.14.13
22. Re GL, Cucinella G, Zaccaria G, et al. Role of MRI in the assessment of cervical cancer. *Semin Ultrasound CT MR*. 2023;44(3):228–237. doi:10.1053/j.sult.2023.04.003
23. Zhou L, Zhang Y, Li X, et al. Multi-model quantitative MRI of uterine cancers in precision medicine. *Insights Imaging*. 2025;16(1):1–12. doi:10.1186/s13244-024-01852-1
24. Berek JS, Matias-Guiu X, Creutzberg C, et al. FIGO staging of endometrial cancer: 2023. *Int J Gynaecol Obstet*. 2023;162(3):383–394. doi:10.1002/ijgo.14739
25. Neves TR, Correia MT, Serrado MA, et al. Staging of endometrial cancer using fusion T2-weighted images with diffusion-weighted images: a way to avoid gadolinium? *Cancers (Basel)*. 2022;14(2):384. doi:10.3390/cancers14020384
26. Rechichi G, Galimberti S, Signorelli M, et al. Endometrial cancer: correlation of apparent diffusion coefficient with tumor grade, depth of myometrial invasion, and presence of lymph node metastases. *AJR Am J Roentgenol*. 2011;197(1):256–262. doi:10.2214/AJR.10.5583
27. Saleh M, Virarkar M, Bhosale P, El Sherif S, Javadi S, Faria SC. Endometrial cancer, the current International Federation of Gynecology and Obstetrics staging system, and the role of imaging. *J Comput Assist Tomogr*. 2020;44(5):714–729. doi:10.1097/RCT.0000000000001042
28. Sbarra M, Lupinelli M, Brook OR, Venkatesan AM, Nougaret S. Imaging of endometrial cancer. *Radiol Clin North Am*. 2023;61(4):609–625. doi:10.1016/j.rcl.2023.02.007
29. Bourgioti C, Chatoupi K, Antoniou A, et al. T2-weighted MRI findings predictive of parametrial involvement in patients with cervical cancer and histologically confirmed full thickness stromal invasion. *Hell J Radiol*. 2018;3(1):23–32. doi:10.36162/hjr.v3i1.13
30. Otero-García MM, Mesa-Álvarez A, Nikolic O, et al. Role of MRI in staging and follow-up of endometrial and cervical cancer: pitfalls and mimickers. *Insights Imaging*. 2019;10:19. doi:10.1186/s13244-019-0701-0
31. Khan SR, Arshad M, Wallitt K, Stewart V, Bharwani N, Barwick TD. What's new in imaging for gynecologic cancer? *Curr Oncol Rep*. 2017;19(12):85. doi:10.1007/s11912-017-0648-3
32. Sadowski EA, Rockall AG, Maturen KE, Robbins JB, Thomassin-Naggara I. Adnexal lesions: imaging strategies for ultrasound and MR imaging. *Diagn Interv Imaging*. 2019;100(10):635–646. doi:10.1016/j.diii.2019.08.001
33. Iyer VR, Lee SI. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. *AJR Am J Roentgenol*. 2010;194(2):311–321. doi:10.2214/AJR.09.3522
34. Sadowski EA, Thomassin-Naggara I, Rockall A, et al. O-RADS MRI risk stratification system: guide for assessing adnexal lesions from the ACR O-RADS Committee. *Radiology*. 2022;303(1):25–37. doi:10.1148/radiol.210437
35. Friedman SN, Itani M, Dehdashti F. PET imaging for gynecologic malignancies. *Radiol Clin North Am*. 2021;59(5):813–833. doi:10.1016/j.rcl.2021.05.006
36. Dejanovic D, Hansen NL, Loft A. PET/CT variants and pitfalls in gynecological cancers. *Semin Nucl Med*. 2021;51(6):593–610. doi:10.1053/j.semnuclmed.2021.06.002
37. Narayanan P, Sahdev A. The role of 18F-FDG PET/CT in common gynaecological malignancies. *Br J Radiol*. 2017;90(1071):20170283. doi:10.1259/bjr.20170283
38. Burger IA, Vargas HA, Donati OF, et al. The value of 18F-FDG PET/CT in recurrent gynecologic malignancies prior to pelvic exenteration. *Gynecol Oncol*. 2013;129(3):586–592. doi:10.1016/j.ygyno.2013.03.014

39. Fruscio R, Sina F, Dolci C, et al. Preoperative 18F-FDG PET/CT in the management of advanced epithelial ovarian cancer. *Gynecol Oncol.* 2013;131(3):689–693. doi:10.1016/j.ygyno.2013.09.002
40. Hynnenen J, Kemppainen J, Lavinus M, et al. A prospective comparison of integrated FDG-PET/contrast-enhanced CT and contrast-enhanced CT for pretreatment imaging of advanced epithelial ovarian cancer. *Gynecol Oncol.* 2013;131(2):389–394. doi:10.1016/j.ygyno.2013.07.100
41. Li Z, Chu T. Recent advances on radionuclide labeled hypoxia-imaging agents. *Curr Pharm Des.* 2012;18(8):1084–1097. doi:10.2174/138161212799504774
42. Nguyen NC, Beriwal S, Moon CH, et al. Diagnostic value of FDG PET/MRI in females with pelvic malignancy: a systematic review of the literature. *Front Oncol.* 2020;10:519440. doi:10.3389/fonc.2020.519440
43. Virarkar M, Viswanathan C, Iyer R, et al. The role of positron emission tomography/magnetic resonance imaging in gynecological malignancies. *J Comput Assist Tomogr.* 2019;43(6):825–834. doi:10.1097/RCT.0000000000000919
44. Zhou J, Zeng ZY, Li L. Progress of artificial intelligence in gynecological malignant tumors. *Cancer Manag Res.* 2020;12:12823–12840. doi:10.2147/CMAR.S284906
45. Sone K, Toyohara Y, Taguchi A, et al. Application of artificial intelligence in gynecologic malignancies: a review. *J Obstet Gynaecol Res.* 2021;47(7):2577–2585. doi:10.1111/jog.14838
46. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. *CA Cancer J Clin.* 2019;69(2):127–157. doi:10.3322/caac.21552
47. Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M. An introductory review of deep learning for prediction models with big data. *Front Artif Intell.* 2020;3:4. doi:10.3389/frai.2020.00004
48. Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. *Insights Imaging.* 2020;11(1):1. doi:10.1186/s13244-019-0836-0
49. El Naqa I, Napel S, Zaidi H. Radiogenomics is the future of treatment response assessment in clinical oncology. *Med Phys.* 2018;45(11):4325–4328. doi:10.1002/mp.13136
50. Bhatla N, Berek JS, Cuello Fredes M, et al. Revised FIGO staging for carcinoma of the cervix uteri, 2018. *Int J Gynaecol Obstet.* 2019;145(1):129–135. doi:10.1002/ijgo.12749
51. Berek JS, Matias-Guiu X, Creutzberg C, et al. Revised FIGO staging for carcinoma of the corpus uteri, 2023. *Int J Gynaecol Obstet.* 2023;162(2):383–394. doi:10.1002/ijgo.14739
52. Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A, et al. O-RADS MRI risk stratification system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. *Radiology.* 2020;294(1):199–209. doi:10.1148/radiol.2019191151
53. Chronas D, Jörg I, Bolten K, et al. First Case Report of Uterine Leiomyosarcoma Diagnosed After Transcervical Fibroid Ablation. *J Clin Med.* 2025;14(1):88. doi:10.3390/jcm14010088

Chapter 5

THE ROLE OF INTERVENTIONAL RADIOLOGY IN GYNECOLOGIC ONCOLOGY

Gülal KARSENAS¹

INTRODUCTION

1. Gynecologic Malignancies and a Multidisciplinary Approach

Gynecologic malignancies represent a complex group of diseases that pose a serious threat to women's health and account for a significant portion of the global cancer burden. This group includes cancers of the ovary, cervix, uterus, vulva, and vagina. Each exhibits unique biological characteristics, and treatment methods depend on many factors such as the stage of the disease, the histopathological features of the tumor, and the patient's general health status. Although traditional treatments like radical surgery, systemic chemotherapy, and radiotherapy are standard options, high morbidity and mortality rates can occur, especially in advanced or recurrent cases. For this reason, oncology practice has necessitated the existence of multidisciplinary oncology boards (tumor boards) to create a personalized and optimal treatment plan for each patient. On these boards, clinicians from different specialties—including gynecologic oncologists, medical oncologists, radiation oncologists, pathologists, and radiologists—collaborate on patient management. This integrated approach is critical for improving patient outcomes and enhancing quality of life (1, 2).

2. DEFINITION AND DEVELOPMENT OF INTERVENTIONAL RADIOLOGY (IR)

Interventional radiology (IR) is a medical specialty that involves minimally invasive diagnostic and therapeutic procedures guided by imaging technologies such as ultrasonography (US), computed tomography (CT), fluoroscopy, and magnetic resonance imaging (MRI). This field began with angiography and

¹ İstinye University Bahçeşehir Liv Hospital, gbagbanci@gmail.com, ORCID iD: 0009-0007-1759-6305

REFERENCES

1. Schwartz, L. H., & Gandras, E. J. (2019). The Role of Percutaneous Biopsy in the Era of Advanced Imaging. *Seminars in Interventional Radiology*, 36(4), 304-311. DOI: 10.1055/s-0039-1698424
2. Wallace, M. J., et al. (2020). Image-guided biopsy of gynecologic malignancies: a systematic review and meta-analysis. *International Journal of Gynecological Cancer*, 30(6), 843-850. DOI: 10.1136/ijgc-2020-001221
3. Arellano, R. S., et al. (2018). Percutaneous Biopsy of Abdominopelvic Lesions: A Multicenter Study. *Journal of Vascular and Interventional Radiology*, 29(12), 1686-1692. DOI: 10.1016/j.jvir.2018.06.012
4. Patel, H., & Narsinh, K. (2019). Management of Malignant Ascites. *Seminars in Interventional Radiology*, 36(4), 312-317. DOI: 10.1055/s-0039-1698425
5. O'Neill, D. S., et al. (2017). PleurX Catheter Placement for Symptomatic Malignant Ascites. *Journal of Palliative Medicine*, 20(9), 986-990. DOI: 10.1089/jpm.2017.0093
6. Razavi, M., & Valente, P. (2015). Uterine Artery Embolization for the Treatment of Gynecologic Malignancy. *CardioVascular and Interventional Radiology*, 38(6), 1431-1439. DOI: 10.1007/s00270-015-1070-5
7. Cui, T., et al. (2020). Transarterial Chemoembolization (TACE) in the Treatment of Liver Metastases from Gynecologic Malignancies. *Journal of Gynecologic Oncology*, 31(3), e44. DOI: 10.3802/jgo.2020.31.e44
8. Hui, J., et al. (2021). Radioembolization with Yttrium-90 for Liver Metastases from Gynecologic Cancers: A Systematic Review. *Journal of Vascular and Interventional Radiology*, 32(9), 1450-1457. DOI: 10.1016/j.jvir.2021.05.006
9. Pishgahi, M., & Kim, M. S. (2019). Technical advances in microwave ablation. *Journal of Cardiovascular and Interventional Radiology*, 30(4), 517-526. DOI: 10.1007/s00270-019-02194-4
10. Gillams, A. (2017). Radiofrequency Ablation in the Treatment of Gynecologic Tumors. *Journal of Clinical Oncology*, 35(28), 3230-3236. DOI: 10.1200/jco.2017.74.8329
11. Russo, A., et al. (2019). Role of Interventional Radiology in the Management of Gynecologic Cancer. *Current Oncology Reports*, 21(4), 35. DOI: 10.1007/s11912-019-0775-6
12. Littrup, P. J., et al. (2018). Cryoablation for Pain Relief in Metastatic Cancer. *Journal of Vascular and Interventional Radiology*, 29(1), 108-115. DOI: 10.1016/j.jvir.2017.06.027
13. Ruzgys, J., & Dvorak, P. (2020). Irreversible Electroporation (IRE): A New Tool for Cancer Treatment. *Medicina (Kaunas)*, 56(11), 606. DOI: 10.3390/medicina56110606
14. Liu, Y., et al. (2021). Percutaneous Nephrostomy and Ureteral Stenting in the Management of Malignant Ureteral Obstruction in Gynecologic Cancer. *International Journal of Gynecological Cancer*, 31(7), 990-997. DOI: 10.1136/ijgc-2020-002167
15. O'Connell, M., et al. (2017). Enteral Stents for Malignant Gastrointestinal Obstruction. *Clinical and Experimental Gastroenterology*, 10, 97-105. DOI: 10.2147/ceg.s101783
16. Berrisford, M., & Williams, J. (2018). Management of Chronic Pelvic Pain in Gynecological Cancer Patients: A Review. *Pain and Therapy*, 7(1), 1-10. DOI: 10.1007/s40122-018-0091-1
17. Flescher, L. T., et al. (2019). Management of Malignant Effusions with Indwelling Pleural Catheters. *Annals of Palliative Medicine*, 8(Suppl 1), S21-S26. DOI: 10.21037/apm.2018.12.01
18. Varghese, V., & Oklu, R. (2020). Artificial Intelligence and Machine Learning in Interventional Radiology. *Seminars in Interventional Radiology*, 37(4), 385-391. DOI: 10.1055/s-0040-1718873
19. Wang, Y., et al. (2018). Interventional Radiology in Gynecologic Oncology. *Abdominal Radiology*, 43(11), 2908-2921. DOI: 10.1007/s00261-018-1647-y
20. Al-Qahtani, A., & Lee, D. A. (2020). Image-Guided Ablation for Bone Metastases. *Techniques in Vascular and Interventional Radiology*, 23(3), 100713. DOI: 10.1016/j.tvir.2020.100713

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

21. Cornelissen, L. F., et al. (2019). Percutaneous Nephrostomy and Ureteral Stenting in Malignant Ureteral Obstruction: A Systematic Review. *European Journal of Surgical Oncology*, 45(6), 941-949. DOI: 10.1016/j.ejso.2019.01.002
22. Kim, J., et al. (2020). Interventional Radiology in the Palliative Care of Cancer Patients. *Journal of Clinical Medicine*, 9(12), 3907. DOI: 10.3390/jcm9123907
23. Munk, P. L., et al. (2020). Percutaneous Gastrostomy and Jejunostomy in Oncology. *CardioVascular and Interventional Radiology*, 43(1), 108-115. DOI: 10.1007/s00270-019-02384-6
24. Fiori, E., et al. (2018). Self-expandable metal stents for palliation of malignant gastric outlet obstruction. *World Journal of Gastroenterology*, 24(17), 1845-1854. DOI: 10.3748/wjg.v24.i17.1845
25. Loubser, M. D., & De Villiers, C. B. (2017). The Role of Interventional Pain Procedures in Palliative Care. *Pain Practice*, 17(7), 896-905. DOI: 10.1111/papr.12529
26. Tei, M., et al. (2019). Pelvic Cancer Pain: Interventional Management. *Current Pain and Headache Reports*, 23(10), 75. DOI: 10.1007/s11916-019-0824-0
27. Van De Bilt, C., et al. (2021). Patient-Reported Outcomes in Malignant Ascites with Indwelling Peritoneal Catheters. *Journal of Palliative Medicine*, 24(1), 81-87. DOI: 10.1089/jpm.2020.0163
28. Dake, M. D., et al. (2018). Fusion Imaging in Interventional Oncology. *Journal of Vascular and Interventional Radiology*, 29(12), 1667-1678. DOI: 10.1016/j.jvir.2018.08.019
29. Piffaretti, G., et al. (2020). Artificial Intelligence and Machine Learning in Interventional Oncology. *European Journal of Surgical Oncology*, 46(7), 1339-1345. DOI: 10.1016/j.ejso.2020.03.003
30. Keshava, A. S., & Oklu, R. (2021). Robotic Systems in Interventional Radiology. *Journal of the American College of Radiology*, 18(2), 273-278. DOI: 10.1016/j.jacr.2020.09.027
31. Yang, X., et al. (2021). Emerging Combination Therapies of Interventional Radiology with Immunotherapy. *Journal of Cancer Research and Clinical Oncology*, 147(1), 187-197. DOI: 10.1007/s00432-020-03223-z
32. Scharll, Y., Radojicic, N., Laimer, G., Schullian, P., & Bale, R. (2024). *Puncture Accuracy of Robot-Assisted CT-Based Punctures in Interventional Radiology—An Ex Vivo Study*. *Diagnostics*, 14(13), e1371, DOI: 10.3390/diagnostics14131371
33. Keisari, Y. (2023). *Tumor ablation-induced anti-tumor immunity*. *Cancer Immunology, Immunotherapy*, 72, Article e3383, DOI: 10.1007/s00262-023-03383-4

Chapter 6

ARTIFICIAL INTELLIGENCE IN GYNECOLOGICAL ONCOLOGY

Mulaim SİZER¹

INTRODUCTION

Globally, cancers of the cervix, endometrium, and ovary are the leading gynecologic tumors and remain important causes of both morbidity and mortality in women. Therefore, early diagnosis and accurate staging are critical for both improving survival and reducing morbidity. From a historical perspective, the role and importance of imaging modalities in gynecologic oncology practice are indisputable. Among imaging modalities, ultrasonography (US), magnetic resonance imaging (MRI), and computed tomography (CT) are widely used for the evaluation of gynecologic cancers, including their diagnosis, staging, and treatment strategy design.

In recent years, artificial intelligence (AI) technologies have facilitated numerous aspects of daily life. Similarly, as in many other fields of medicine, they have also opened new avenues in gynecologic oncology, particularly in diagnostic, prognostic, and treatment planning processes. AI has the potential to derive meaningful insights from large volumes of medical data (including imaging, genomic, and clinical information), enhance diagnostic speed, reduce subjective interpretation, and ensure continuity in patient care (1–4).

¹ Specialist, Batman Training and Research Hospital, mulayimsizer@gmail.com, ORCID iD: 0000-0003-4864-7287

Future AI systems are expected not only to integrate imaging data but also to incorporate clinical, histopathological, genomic, and metabolomic information, thereby enabling the construction of multidimensional decision-making models. This approach offers the possibility of enhancing the precision of treatment response and survival prediction, while also supporting the design of patient-specific therapeutic strategies. In this way, unnecessary treatments may be avoided, adverse effects minimized, and overall patient quality of life enhanced.

In conclusion, AI and ML-based approaches offer groundbreaking advances in gynecologic oncology, both in terms of diagnostic accuracy and treatment planning. In the future, real-time decision support systems, multimodal data integration, and AI-driven mobile health solutions are expected to further strengthen personalized oncology. If implemented within the framework of multidisciplinary collaboration, robust data security infrastructures, and internationally recognized regulatory standards, AI holds the potential to significantly improve both patient survival and overall quality of life among individuals diagnosed with gynecologic malignancies.

REFERENCES

1. Restaino S, De Giorgio MR, Pellecchia G, Arcieri M, Vasta FM, Fedele C, et al. Artificial Intelligence in Gynecological Oncology from Diagnosis to Surgery. *Cancers (Basel)* [Internet]. 2025 Apr 1 [cited 2025 Aug 13];17(7):1060. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11987942/>
2. Moro F, Ciancia M, Zace D, Vagni M, Tran HE, Giudice MT, et al. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. *Int J Cancer* [Internet]. 2024 Nov 15 [cited 2025 Aug 13];155(10):1832–45. Available from: <https://pubmed.ncbi.nlm.nih.gov/38989809/>
3. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. *CA Cancer J Clin* [Internet]. 2019 Mar 1 [cited 2025 Aug 13];69(2):127–57. Available from: <https://onlinelibrary.wiley.com/doi/full/10.3322/caac.21552>
4. Lecointre L, Dana J, Lodi M, Akladios C, Gallix B. Artificial intelligence-based radiomics models in endometrial cancer: A systematic review. *European Journal of Surgical Oncology*. 2021 Nov 1;47(11):2734–41.
5. Russell SJ, Norvig P. *Artificial intelligence: A modern approach;[the intelligent agent book]*. Prentice hall; 1995.
6. Deo RC. Machine learning in medicine. *Circulation* [Internet]. 2015 Nov 17 [cited 2025 Aug 13];132(20):1920–30. Available from: <https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.115.001593>
7. Pattern Recognition and Machine Learning. *Pattern Recognition and Machine Learning*. 2006 Dec 21;
8. Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, et al. Machine Learning and Deep Learning Methods for Cybersecurity. *IEEE Access*. 2018 May 15;6:35365–81.
9. Hatt M, Parmar C, Qi J, El Naqa I. Machine (Deep) learning methods for image processing and radiomics. *IEEE Trans Radiat Plasma Med Sci*. 2019 Mar 1;3(2):104–8.

10. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. *Med Image Anal.* 2017 Dec 1;42:60–88.
11. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RGPM, Granton P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. *Eur J Cancer.* 2012 Mar 1;48(4):441–6.
12. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. *Nature Communications* 2014 5:1 [Internet]. 2014 Jun 3 [cited 2025 Aug 13];5(1):1–9. Available from: <https://www.nature.com/articles/ncomms5006>
13. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. *Nature Medicine* 2019 25:1 [Internet]. 2019 Jan 7 [cited 2025 Aug 13];25(1):24–9. Available from: <https://www.nature.com/articles/s41591-018-0316-z>
14. Garg P, Mohanty A, Ramisetty S, Kulkarni P, Horne D, Pisick E, et al. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. *Biochim Biophys Acta Rev Cancer* [Internet]. 2023 Nov 1 [cited 2025 Aug 13];1878(6). Available from: <https://pubmed.ncbi.nlm.nih.gov/37980945/>
15. Rizzo S, Manganaro L, Dolciami M, Gasparri ML, Papadia A, Del Grande F. Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review. *Cancers* 2021, Vol 13, Page 573 [Internet]. 2021 Feb 2 [cited 2025 Aug 13];13(3):573. Available from: [https://www.mdpi.com/2072-6694/13/3/573/htm](https://www.mdpi.com/2072-6694/13/3/573)
16. Shrestha P, Poudyal B, Yadollahi S, E. Wright D, V. Gregory A, D. Warner J, et al. A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions. *Gynecol Oncol.* 2022 Sep 1;166(3):596–605.
17. Lupean RA, Štefan PA, Feier DS, Csutak C, Ganeshan B, Lebovici A, et al. Radiomic Analysis of MRI Images is Instrumental to the Stratification of Ovarian Cysts. *Journal of Personalized Medicine* 2020, Vol 10, Page 127 [Internet]. 2020 Sep 14 [cited 2025 Aug 13];10(3):127. Available from: [https://www.mdpi.com/2075-4426/10/3/127/htm](https://www.mdpi.com/2075-4426/10/3/127)
18. Wang R, Cai Y, Lee IK, Hu R, Purkayastha S, Pan I, et al. Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging. *Eur Radiol* [Internet]. 2021 Jul 1 [cited 2025 Aug 13];31(7):4960–71. Available from: <https://link.springer.com/article/10.1007/s00330-020-07266-x>
19. Laios A, De Freitas DLD, Saalmink G, Tan YS, Johnson R, Zubayraeva A, et al. Stratification of Length of Stay Prediction following Surgical Cyoreduction in Advanced High-Grade Serous Ovarian Cancer Patients Using Artificial Intelligence; the Leeds L-AI-OS Score. *Current Oncology* 2022, Vol 29, Pages 9088-9104 [Internet]. 2022 Nov 23 [cited 2025 Aug 13];29(12):9088–104. Available from: [https://www.mdpi.com/1718-7729/29/12/711/htm](https://www.mdpi.com/1718-7729/29/12/711)
20. Erdemoglu E, Serel TA, Karacan E, Köksal OK, Turan İ, Öztürk V, et al. Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women. *AJOG Global Reports.* 2023 Feb 1;3(1):100154.
21. Yan BC, Li Y, Ma FH, Zhang GF, Feng F, Sun MH, et al. Radiologists with MRI-based radiomics aids to predict the pelvic lymph node metastasis in endometrial cancer: a multicenter study. *Eur Radiol* [Internet]. 2021 Jan 1 [cited 2025 Aug 14];31(1):411–22. Available from: <https://link.springer.com/article/10.1007/s00330-020-07099-8>
22. Jacob H, Dybvik JA, Ytre-Hauge S, Fasmer KE, Hoivik EA, Trovik J, et al. An MRI-Based Radiomic Prognostic Index Predicts Poor Outcome and Specific Genetic Alterations in Endometrial Cancer. *Journal of Clinical Medicine* 2021, Vol 10, Page 538 [Internet]. 2021 Feb 2 [cited 2025 Aug 14];10(3):538. Available from: [https://www.mdpi.com/2077-0383/10/3/538/htm](https://www.mdpi.com/2077-0383/10/3/538)
23. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* [Internet]. 2021 May 1 [cited 2025 Aug 14];71(3):209–49. Available from: <https://onlinelibrary.wiley.com/doi/full/10.3322/caac.21660>

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

24. Cervical Cancer — Cancer Stat Facts [Internet]. [cited 2025 Aug 14]. Available from: <https://seer.cancer.gov/statfacts/html/cervix.html>
25. Charoenkwan P, Shoombuatong W, Nantasupha C, Muangmool T, Suprasert P, Charoenkwan K. Article ipmi: Machine learning-aided identification of parametrial invasion in women with early-stage cervical cancer. *Diagnostics* [Internet]. 2021 Aug 1 [cited 2025 Aug 14];11(8):1454. Available from: <https://www.mdpi.com/2075-4418/11/8/1454/htm>
26. Chiappa V, Interlenghi M, Salvatore C, Bertolina F, Bogani G, Ditto A, et al. Using rADiOMICs and machine learning with ultrasonography for the differential diagnosis of myometrial tumors (the ADMIRAL pilot study). *Radiomics and differential diagnosis of myometrial tumors. Gynecol Oncol.* 2021 Jun 1;161(3):838–44.
27. Qin J, Zhang S, Poon L, Pan Z, Luo J, Yu N, et al. Doppler-based predictive model for methotrexate resistance in low-risk gestational trophoblastic neoplasia with myometrial invasion: prospective study of 147 patients. *Ultrasound in Obstetrics & Gynecology* [Internet]. 2021 May 1 [cited 2025 Aug 14];57(5):829–39. Available from: <https://onlinelibrary.wiley.com/doi/full/10.1002/uog.22069>
28. Fragomeni SM, Moro F, Palluzzi F, Mascilini F, Rufini V, Collarino A, et al. Evaluating the Risk of Inguinal Lymph Node Metastases before Surgery Using the Morphonode Predictive Model: A Prospective Diagnostic Study in Vulvar Cancer Patients. *Cancers (Basel)* [Internet]. 2023 Feb 1 [cited 2025 Aug 14];15(4):1121. Available from: <https://www.mdpi.com/2072-6694/15/4/1121/htm>

Chapter 7

LYMPHEDEMA IN GYNECOLOGIC ONCOLOGY

Elif KANDEMİR EKİNCİ¹
İlyas TURAN²

1. INTRODUCTION

The lymphatic system consists of vessels that carry lymph and the organs belonging to this system(1). It is examined in two main parts: pre-lymphatic and lymphatic. The pre-lymphatic part is made up of small channels located in the spaces between tissues. The main function of lymphatic capillaries is to collect the fluid and macromolecules present in the interstitial space. These capillaries connect with collecting vessels via precollectors, which are responsible for the transport and formation of lymph fluid(2).

The lymphatic system plays a fundamental role in fluid exchange between blood capillaries and the interstitial space. In this process, capillary pressure, the negative pressure of the interstitial space, the colloid osmotic pressure of interstitial fluid, and the colloid osmotic pressure of plasma serve as the main parameters influencing filtration(3).

These pressures create a net pressure gradient that supports filtration. Under normal conditions, this causes fluid to filter from the arterial end of the capillary vessels into the interstitial space(4). Since the pressure in the interstitial space is higher than the pressure in the lymphatic capillaries, one-way valves open, allowing the fluid to enter the lymphatic capillaries. From this point onward, the fluid is referred to as lymph(5).

Under normal circumstances, there is a balance between these pressures. Disruption of this balance can lead to edema formation(6). In lymphedema, the accumulation of protein-rich and stagnant extracellular fluid in the tissues negatively affects the delivery of oxygen and nutrients to normal tissue(7).

¹ Obstetrics and Gynecology Specialist, Isparta City Hospital, elifkan04@gmail.com, ORCID iD: 0009-0008-9783-8235

² Gynecologic Oncology Specialist, Batman Training and Research Hospital Department, ilyasturan04@gmail.com, ORCID iD: 0000-0003-3611-9428

Although a cure can be achieved in some patients, surgical interventions may be considered in cases where conservative treatments are insufficient to reduce the volume of the affected extremity. Various surgical techniques for chronic lymphedema have been investigated in the past. One such technique, **debulking surgery**, involves complete removal of dermal and subdermal lymphatic structures along with adipose tissue and fibrosclerotic connective tissue to reduce volume in the affected area. However, this method is no longer preferred because it requires extensive tissue removal and carries significant risks, including infection, loss of extremity function, skin or flap necrosis, hematoma, chronic wounds, delayed healing, and progression of lymphedema(44).

Due to the high complication risk of debulking surgery, **liposuction** has replaced it as the preferred surgical approach. Postoperatively, patients must use compression stockings for life to maintain surgical success(45).

In certain gynecologic cancer cases, **sentinel lymph node biopsy** has the potential to reduce or completely prevent the risk of lymphedema(46). In a study conducted by Hareyama and colleagues, patients in whom circumflex iliac lymph nodes (CIN) were removed were compared with those in whom these nodes were preserved(47). The results showed that patients with preserved CIN had a significantly lower incidence of lower-extremity lymphedema, and cellulitis was not observed in this group. Therefore, preserving CIN may reduce the risk of lymphedema or contribute to its complete prevention.

For patients undergoing radical surgery, it is important to adopt preventive lifestyle measures and develop appropriate self-care habits to reduce the risk of lower-extremity lymphedema(48). Studies have shown that patients who exercise regularly, are informed about lymphedema before treatment, and continue with preventive personal care practices have a significantly lower risk of developing lymphedema(49).

REFERENCES

1. Foldi M, Foldi E, editors. Foldi's textbook of lymphology for physicians and lymphedema therapists. Mosby; 2006.
2. Damstra RJ. Diagnostic and therapeutical aspects of lymphedema.
3. Ridner SH. Pathophysiology of lymphedema. In: Seminars in oncology nursing 2013 Feb 1 (Vol. 29, No. 1, pp. 4-11). WB Saunders.
4. Michael JA, Sircar S. Fundamentals of medical physiology. (No Title). 2010.
5. Rockson SG. Update on the biology and treatment of lymphedema. Current treatment options in cardiovascular medicine. 2012 Apr;14(2):184-92.
6. Olszewski WL, Engeset AR. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. American Journal of Physiology-Heart and Circulatory Physiology. 1980 Dec 1;239(6):H775-83.

7. Grada AA, Phillips TJ. Lymphedema: Pathophysiology and clinical manifestations. *Journal of the American Academy of Dermatology*. 2017 Dec 1;77(6):1009-20.
8. Mallon EC, Ryan TJ. Lymphedema and wound healing. *Clinics in dermatology*. 1994 Jan 1;12(1):89-93.
9. Mortimer PS, Rockson SG. New developments in clinical aspects of lymphatic disease. *The Journal of clinical investigation*. 2014 Mar 3;124(3):915-21.
10. Brennan MJ, Miller LT. Overview of treatment options and review of the current role and use of compression garments, intermittent pumps, and exercise in the management of lymphedema. *Cancer: Interdisciplinary International Journal of the American Cancer Society*. 1998 Dec 15;83(S12B):2821-7.
11. Abu-Rustum NR, Alektiar K, Iasonos A, Lev G, Sonoda Y, Aghajanian C, Chi DS, Barakat RR. The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center. *Gynecologic oncology*. 2006 Nov 1;103(2):714-8.: a 12-year experience at Memorial Sloan-Kettering Cancer Center. *Gynecol Oncol*. 2006;103:714Y718.
12. Bergmark K, Åvall-Lundqvist E, Dickman PW, Henningsohn L, Steineck G. Lymphedema and bladder-emptying difficulties after radical hysterectomy for early cervical cancer and among population controls. *International Journal of Gynecological Cancer*. 2006 Apr 1;16(3):1130-9.
13. Tanaka T, Ohki N, Kojima A, Maeno Y, Miyahara Y, Sudo T, Takekida S, Yamaguchi S, Sasaki H, Nishimura R. Radiotherapy negates the effect of retroperitoneal nonclosure for prevention of lymphedema of the legs following pelvic lymphadenectomy for gynecological malignancies: an analysis from a questionnaire survey. *International Journal of Gynecological Cancer*. 2007 Feb 1;17(2):460-4.
14. Tada H, Teramukai S, Fukushima M, Sasaki H. Risk factors for lower limb lymphedema after lymph node dissection in patients with ovarian and uterine carcinoma. *BMC cancer*. 2009 Feb 5;9(1):47. *BMC Cancer*. 2009;9:47.
15. Kim JH, Choi JH, Ki EY, Lee SJ, Yoon JH, Lee KH, Park TC, Park JS, Bae SN, Hur SY. Incidence and risk factors of lower-extremity lymphedema after radical surgery with or without adjuvant radiotherapy in patients with FIGO stage I to stage IIA cervical cancer. *International Journal of Gynecological Cancer*. 2012 May 1;22(4):686-91.
16. Todo Y, Yamamoto R, Minobe S, Suzuki Y, Takeshi U, Nakatani M, Aoyagi Y, Ohba Y, Okamoto K, Kato H. Risk factors for postoperative lower-extremity lymphedema in endometrial cancer survivors who had treatment including lymphadenectomy. *Gynecologic oncology*. 2010 Oct 1;119(1):60-4.
17. Beesley V, Janda M, Eakin E, Obermair A, Battistutta D. Lymphedema after gynecological cancer treatment: prevalence, correlates, and supportive care needs. *Cancer*. 2007 Jun 15;109(12):2607-14.
18. ISL I. The diagnosis and treatment of peripheral lymphedema: 2013 Consensus Document of the International Society of Lymphology. *Lymphology*. 2013 Aug 19;46(1):1-1.
19. Brown J. A clinically useful method for evaluating lymphedema. *Clinical journal of oncology nursing*. 2004 Feb 1;8(1).
20. Lockwood-Rayermann S. Lymphedema in gynecologic cancer survivors: an area for exploration?. *Cancer nursing*. 2007 Jul 1;30(4):E11-8.
21. Suehiro K, Morikage N, Murakami M, Yamashita O, Samura M, Hamano K. Significance of ultrasound examination of skin and subcutaneous tissue in secondary lower extremity lymphedema. *Annals of vascular diseases*. 2013 Jun 25;6(2):180-8.
22. Hoffner M, Peterson P, Månnsson S, Brorson H. Lymphedema leads to fat deposition in muscle and decreased muscle/water volume after liposuction: a magnetic resonance imaging study. *Lymphatic research and biology*. 2018 Apr 1;16(2):174-81.
23. Mazzei FG, Gentili F, Guerrini S, Cioffi Squitieri N, Guerrieri D, Gennaro P, Scialpi M, Volterrani L, Mazzei MA. MR lymphangiography: a practical guide to perform it and a brief review of the

Lymphedema in Gynecologic Oncology

literature from a technical point of view. BioMed research international. 2017;2017(1):2598358.

- 24. Yamada K, Shinaoka A, Kimata Y. Three-dimensional imaging of lymphatic system in lymphedema legs using interstitial computed tomography-lymphography. *Acta Med Okayama*. 2017 Apr 1;71(2):171-7.
- 25. Moshiri M, Katz DS, Boris M, Yung E. Using lymphoscintigraphy to evaluate suspected lymphedema of the extremities. *American Journal of Roentgenology*. 2002 Feb;178(2):405-12.
- 26. Yamamoto T, Matsuda N, Doi K, Oshima A, Yoshimatsu H, Todokoro T, Ogata F, Mihara M, Narushima M, Iida T, Koshima I. The earliest finding of indocyanine green lymphography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer treatment: the modified dermal backflow stage and concept of subclinical lymphedema. *Plastic and Reconstructive surgery*. 2011 Oct 1;128(4):314e-21e.
- 27. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. *Cancer epidemiology, biomarkers & prevention*. 2017 Apr 1;26(4):444-57.
- 28. Snijders-Keilholz A, Hellebrekers BW, Zwinderman AH, Van De Vijver MJ, Trimbos JB. Adjuvant radiotherapy following radical hysterectomy for patients with early-stage cervical carcinoma (1984-1996). *Radiotherapy and oncology*. 1999 May 1;51(2):161-7.
- 29. Werngren-Elgström M, Lidman D. Lymphoedema of the lower extremities after surgery and radiotherapy for cancer of the cervix. *Scandinavian journal of plastic and reconstructive surgery and hand surgery*. 1994 Jan 1;28(4):289-93.
- 30. Fröding LP, Ottosen C, Mosgaard BJ, Jensen PT. Quality of life, urogynecological morbidity, and lymphedema after radical vaginal trachelectomy for early-stage cervical cancer. *International Journal of Gynecological Cancer*. 2015 May 1;25(4):699-706.
- 31. Biglia N, Librino A, Ottino MC, Panuccio E, Daniele A, Chahin A. Lower limb lymphedema and neurological complications after lymphadenectomy for gynecological cancer. *International Journal of Gynecological Cancer*. 2015 Mar 1;25(3):521-5.
- 32. Lim MC, Lee JS, Nam BH, Seo SS, Kang S, Park SY. Lower extremity edema in patients with early ovarian cancer. *Journal of Ovarian Research*. 2014 Mar 7;7(1):28.
- 33. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines): head and neck cancers. Fort. Washington, PA: National Comprehensive Cancer Network. 2019.
- 34. SALEHI S, STÅLBERG K, MARCICKIEWICZ J, ROSENBERG P, FALCONER H. Allt bättre diagnostik och behandling vid endometriecancer. *LAKARTIDNINGEN*. 2015;112(50):2284.
- 35. Ryan M, Stainton MC, Slaytor EK, Jaconelli C, Watts S, MacKenzie P. Aetiology and prevalence of lower limb lymphoedema following treatment for gynaecological cancer. *Australian and New Zealand journal of obstetrics and gynaecology*. 2003 Apr;43(2):148-51.
- 36. Farrell R, Gebski V, Hacker NF. Quality of life after complete lymphadenectomy for vulvar cancer: do women prefer sentinel lymph node biopsy?. *International Journal of Gynecological Cancer*. 2014 May 1;24(4):813-9.
- 37. Moore RG, Robison K, Brown AK, DiSilvestro P, Steinhoff M, Noto R, Brard L, Granai CO. Isolated sentinel lymph node dissection with conservative management in patients with squamous cell carcinoma of the vulva: a prospective trial. *Gynecologic oncology*. 2008 Apr 1;109(1):65-70.
- 38. Cormier JN, Askew RL, Mungovan KS, Xing Y, Ross MI, Armer JM. Lymphedema beyond breast cancer: A systematic review and meta-analysis of cancer-related secondary lymphedema. *Cancer*. 2010 Nov 15;116(22):5138-49.
- 39. Tiwari P, Coriddi M, Salani R, Povoski SP. Breast and gynecologic cancer-related extremity lymphedema: a review of diagnostic modalities and management options. *World journal of surgical oncology*. 2013 Sep 22;11(1):237.
- 40. Morgan PA, Franks PJ, Moffatt CJ. Health-related quality of life with lymphoedema: a review of the literature. *International wound journal*. 2005 Mar;2(1):47-62.
- 41. Földi E, Földi M, Weissleder H. Conservative treatment of lymphoedema of the limbs. *Angiology*. 1985 Mar;36(3):171-80.

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

42. Franks PJ, Moffatt CJ, Doherty DC, Williams AF, Jeffs E, Mortimer PS. Assessment of health-related quality of life in patients with lymphedema of the lower limb. *Wound Repair and Regeneration*. 2006 Mar;14(2):110-8.
43. Lasinski BB. Complete decongestive therapy for treatment of lymphedema. In *Seminars in oncology nursing* 2013 Feb 1 (Vol. 29, No. 1, pp. 20-27). WB Saunders.
44. Gloviczki P, Calcagno D, Schirger A, Pairolo PC, Cherry KJ, Hallett JW, Wahner HW. Noninvasive evaluation of the swollen extremity: experiences with 190 lymphoscintigraphic examinations. *Journal of vascular surgery*. 1989 May 1;9(5):683-90.
45. Chang CJ, Cormier JN. Lymphedema interventions: exercise, surgery, and compression devices. In *Seminars in oncology nursing* 2013 Feb 1 (Vol. 29, No. 1, pp. 28-40). WB Saunders.
46. Biglia N, Zanfagnin V, Daniele A, Robba E, Bounous VE. Lower body lymphedema in patients with gynecologic cancer. *Anticancer Research*. 2017 Aug 1;37(8):4005-15.
47. Hareyama H, Ito K, Hada K, Uchida A, Hayakashi Y, Hirayama E, Oikawa M, Okuyama K. Reduction/prevention of lower extremity lymphedema after pelvic and para-aortic lymphadenectomy for patients with gynecologic malignancies. *Annals of surgical oncology*. 2012 Jan;19(1):268-73.
48. National Cancer Control Programme. *Prevention of Clinical Lymphoedema after Cancer Treatment: Early Detection and Risk Reduction. A guide for Health Professionals*. Available online: <https://www.hse.ie/eng/services/list/5/cancer/patient/leaflets/prevention-of-clinical-lymphoedema-after-cancer-treatment.pdf> (accessed on 06 August 2025).
49. Cheifetz O, Haley L. Management of secondary lymphedema related to breast cancer. *Canadian Family Physician*. 2010 Dec 1;56(12):1277-84.

Chapter 8

RESPIRATORY PHYSIOTHERAPY IN GYNECOLOGIC ONCOLOGY PATIENTS

Mahmut Dolay YAMAN¹

INTRODUCTION

Gynecologic oncology encompasses the diagnosis, treatment, and follow-up of malignancies of the female reproductive system, which remain a major cause of morbidity and mortality worldwide. Despite significant advances in surgical techniques, anesthesia, and perioperative care, patients with gynecologic cancers are at high risk of developing postoperative pulmonary complications. Major abdominal procedures, such as laparotomy and cytoreductive surgery, in particular, are strongly associated with impaired respiratory mechanics, reduced lung volumes, and a higher incidence of atelectasis and pneumonia (1). These complications not only prolong hospital stay but also adversely affect recovery, quality of life, and, in severe cases, survival outcomes (2).

Respiratory physiotherapy has emerged as a cornerstone of perioperative care to address these risks. Its interventions aim to preserve pulmonary function, reduce the likelihood of atelectasis and pneumonia, optimize oxygenation, and promote early mobilization. Several studies across different surgical populations have demonstrated that targeted respiratory interventions significantly decrease complication rates and enhance functional capacity (3). However, systematic reviews emphasize that evidence specific to gynecologic oncology patients is still limited, leaving a gap in the literature regarding standardized protocols and clinical integration (4).

This chapter seeks to provide a comprehensive overview of respiratory physiotherapy in the context of gynecologic oncology. It will outline the pathophysiological challenges faced by this patient population, discuss commonly applied therapeutic techniques, review the available clinical evidence, and propose

¹ Obstetrics and Gynecology Department, Golcuk Necati Celik State Hospital, dolay.yaman@gmail.com, ORCID iD: 0009-0008-1620-1583

It is apparent that there is a paucity of randomized controlled trials conducted specifically in the gynecologic oncology population. Current evidence suggests that breathing exercises, mobilization, secretion clearance techniques, and device-supported interventions effectively reduce complication risks and improve oxygenation. However, the number of randomized controlled trials specifically focusing on gynecologic oncology remains limited, highlighting the need for further high-quality studies to establish stronger evidence.

Looking ahead, the development of patient-centered and individualized physiotherapy protocols within multidisciplinary teams will be of paramount importance. Moreover, future research should not only investigate physiological outcomes but also assess the impact of respiratory physiotherapy on quality of life, psychological well-being, and patient satisfaction.

In conclusion, the systematic integration of respiratory physiotherapy into the routine care of gynecologic oncology patients has the potential to prevent short-term complications and contribute to the preservation of long-term functional independence.

REFERENCES

1. **Johnson C, et al.** *Pulmonary complications after gynecologic oncology surgery*. Int J Gynecol Cancer. 2019.
2. **Kumar S, Patel S.** *Respiratory complications following cytoreductive surgery in gynecologic cancers*. Gynecol Oncol. 2020.
3. **Pasquina P, Tramèr MR, Granier J-M, Walder B.** *Respiratory physiotherapy to prevent pulmonary complications after abdominal surgery: A systematic review*. Chest. 2006;130(6):1887-1899.
4. **Martinez G, et al.** *Respiratory physiotherapy in surgical oncology patients: systematic review*. Supportive Care in Cancer. 2022.
5. Miskovic A, Lumb AB; Postoperative pulmonary complications. *British Journal of Anaesthesia*. 2017;118(3):317-334.
6. **O'Donnell DE, et al.** *Pulmonary toxicity of chemotherapy: mechanisms and management*. Clin Chest Med. 2004;25(1):175-188.
7. **Clive AO, et al.** *Management of malignant pleural effusion*. Am J Respir Crit Care Med. 2015;192(8): 915-923.
8. **Celik S, et al.** *Effect of preoperative respiratory physiotherapy on postoperative pulmonary complications in patients undergoing major abdominal surgery*. Clinical Respiratory Journal. 2018.
9. **Anderson O, et al.** *Impact of perioperative physiotherapy on postoperative recovery after abdominal surgery*. Annals of Surgery. 2019.
10. **Hulzebos EH, et al.** *Preoperative intensive inspiratory muscle training reduces postoperative pulmonary complications in high-risk patients undergoing CABG surgery*. JAMA. 2006;296(15):1851-1857.
11. **Morris PE, et al.** *Early intensive care unit mobility therapy in the treatment of acute respiratory failure*. Crit Care Med. 2008;36(8):2238-2243.
12. **Freitas ERFS, et al.** *Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery*. Cochrane Database Syst Rev. 2012;2012(9):CD006058.

Respiratory Physiotherapy in Gynecologic Oncology Patients

13. Lv F, et al. *Multidisciplinary perioperative management improves outcomes in major abdominal surgery*. J Surg Res. 2020;253:45–52.
14. Spruit MA, et al. *An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation*. Am J Respir Crit Care Med. 2013;188(8):e13–e64.
15. Chen YH, et al. *Preoperative inspiratory muscle training improves recovery after cardiac surgery: a randomized controlled trial*. Eur J Cardiothorac Surg. 2011;39(5):766–772.

Chapter 9

NEUROPATHIC PAIN IN GYNECOLOGICAL ONCOLOGY PATIENTS

Dorukhan DEMIR¹

INTRODUCTION

Neuropathic pain was firstly defined in 1994 by International Association for the Study of Pain (IASP) as “pain initiated or caused by a primary lesion, dysfunction, or transitory perturbation of the peripheral or central nervous system.” Including the term “dysfunction” in this definition brought up a disagreement between experts, and a new definition for neuropathic pain was necessary. Neuropathic pain was redefined in 2011 by the International Association for the Study of Pain Committee as “pain caused by a lesion or disease of the somatosensory system” [1].

The diseases or lesions affecting the nervous system in human beings may cause loss of function. Also, it may cause increased pain sensitivity and spontaneous pain. This pain is usually described as chronic but sometimes may be manifested as attacks of pain. Neuropathic pain can result from various etiological disorders affecting the central or peripheral nervous system. These disorders may be hereditary, metabolic, vascular, neurodegenerative, and autoimmune, as well as tumors, trauma, infections, and toxins. In addition to these factors, there are idiopathic neuropathies whose etiology is unknown. The pattern of pain is consistent with the underlying lesion or disease. Pain may be associated with hyperalgesia (more intense pain than expected) due to abnormal signal transmission, exaggerated response to non-painful stimuli (allodynia), numbness, and paresthesia (tingling sensation) [2, 3].

¹ Department of Obstetrics and Gynecology, Burdur State Hospital, dorukhandemir@gmail.com, ORCID iD: 0000-0002-0329-8135

time after discontinuation of the drug, but neuropathy of the patients with regimens of cisplatin and oxaliplatin may worsen before improvement. This phenomenon is referred to as the “coasting phenomenon” [19].

There is no proven agent for the prevention of peripheral neuropathy in the guidelines [20]. Current researches have shown that cryotherapy, exercise, and compression therapy can partially prevent neuropathic pain symptoms [20, 21]. In the literature there are studies supporting the use of acupuncture for neuropathic pain but it has been stated that for higher evidence, more data is needed [20, 22].

Regarding the use of glucocorticoids and nonsteroidal anti-inflammatory drugs in the treatment of acute neuropathy, results from researches are inconsistent. While some studies report benefit from glucocorticoid regimens, these practices are not mentioned in the American Society of Clinical Oncology (ASCO) guidelines [23, 24].

Duloxetine use has been shown to be effective in treating chronic neurotoxic pain, particularly that associated with platinum or taxane use. Patients who were treated with duloxetine for 5 weeks reported not only a reduction in pain scores but also a decrease in tingling and numbness in their feet [25, 26]. The efficacy of the tricyclic antidepressants nortriptyline and amitriptyline has not been found to be sufficient [27, 28]. Similarly, randomized trials of gabapentinoids have not shown efficacy in the treatment of neuropathy [29].

CONCLUSION

In conclusion, neuropathic pain significantly impacts the quality of life of gynecological oncology patients. It is crucial to pay attention to neuropathic pain symptom characteristics when evaluating patients. While several types of neuropathic pain have well-established diagnostic and therapeutic methods in the literature, there is no proven treatment for chemotherapy-induced peripheral neuropathy pain. As a result, additional further research is required to establish evidence-based medical practices.

REFERENCES

1. Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. *Pain*. 2011;152(10):2204-2205. doi:10.1016/j.pain.2011.06.017
2. Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain. *Pain*. 2019;160(1):53-59. doi:10.1097/j.pain.0000000000001365
3. Singh L, Stevens EE. Leg pain and gynecologic malignancy. *Am J Hosp Palliat Care*. 2013;30(6):594-600. doi:10.1177/1049909112460422
4. Yoon SY, Oh J. Neuropathic cancer pain: prevalence, pathophysiology, and management. *Korean J Intern Med*. 2018;33(6):1058-1069. doi:10.3904/kjim.2018.162

Neuropathic Pain in Gynecological Oncology Patients

5. Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. *Pain*. 2012;153(2):359-365. doi:10.1016/j.pain.2011.10.028
6. Danés-López F, Diaz-Palominos C, Ortiz Domínguez A, et al. Clinical Characteristics of Neuropathic Pain and Its Relationship with Cancer in Different Corporal Areas-A Systematic Review. *Diagnostics (Basel)*. 2025;15(1):116. Published 2025 Jan 6. doi:10.3390/diagnostics15010116
7. Planner AC, Donaghy M, Moore NR. Causes of lumbosacral plexopathy. *Clin Radiol*. 2006;61(12):987-995. doi:10.1016/j.crad.2006.04.018
8. Felice KJ, Donaldson JO. Lumbosacral plexopathy due to benign uterine leiomyoma. *Neurology*. 1995;45(10):1943-1944. doi:10.1212/wnl.45.10.1943
9. Hsu PA, Carmel, Levin K. Acute lumbosacral radiculopathy: Etiology, clinical features, and diagnosis. In: Preston DC, ed. UpToDate. Wolters Kluwer; 2025. Accessed September 10, 2025. <https://www.uptodate.com/contents/acute-lumbosacral-radiculopathy-etiology-clinical-features-and-diagnosis>
10. Moses R, Philip JAN, Lickiss JN. Semptomatik iyileşme ve palyatif bakım. In: Berek JS, Hacker NF, eds. Berek & Hacker Jinekolojik Onkoloji. 6th ed. (Trans. ed.: Ayhan A, Arvas M, Yüce K, Köse MF, Ortaç F). Güneş Tip Kitabevleri; 2017:912-913.
11. Jaeckle KA, Young DF, Foley KM. The natural history of lumbosacral plexopathy in cancer. *Neurology*. 1985;35(1):8-15. doi:10.1212/wnl.35.1.8
12. Sanuki N, Kodama S, Seta H, Sakai M, Watanabe H. Radiation Therapy for Malignant Lumbosacral Plexopathy: A Case Series. *Cureus*. 2022;14(1):e20939. doi:10.7759/cureus.20939
13. Maravilla KR, Bowen BC. Imaging of the peripheral nervous system: evaluation of peripheral neuropathy and plexopathy. *AJNR Am J Neuroradiol*. 1998;19(6):1011-1023.
14. Moore KR, Tsuruda JS, Dailey AT. The value of MR neurography for evaluating extraspinal neuropathic leg pain: a pictorial essay. *AJNR Am J Neuroradiol*. 2001;22(4):786-794.
15. Telleman JA, Sneag DB, Visser LH. The role of imaging in focal neuropathies. *Handb Clin Neurol*. 2024;201:19-42. doi:10.1016/B978-0-323-90108-6.00001-6
16. Deleu AL, Ahmadi Bidakhvidi N, Van Wynsberge L, Van Laere K, De Meerleer G, Goffin K. [¹⁸F]PSMA-1007 PET/CT in the detection of neoplastic lumbosacral plexopathy as an emerging and underestimated spread of prostate cancer. *Eur J Nucl Med Mol Imaging*. 2022;49(11):3950-3951. doi:10.1007/s00259-022-05828-3
17. Preston DC, Shapiro BE. Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations. 3rd ed. Elsevier; 2012.
18. Lustberg MB. Prevention and treatment of chemotherapy-induced peripheral neuropathy. In: Drews RE, Schnipper L, eds. UpToDate. Wolters Kluwer; 2025. Accessed September 13, 2025. <https://www.uptodate.com/contents/prevention-and-treatment-of-chemotherapy-induced-peripheral-neuropathy>
19. Pachman DR, Qin R, Seisler DK, et al. Clinical Course of Oxaliplatin-Induced Neuropathy: Results From the Randomized Phase III Trial N08CB (Alliance). *J Clin Oncol*. 2015;33(30):3416-3422. doi:10.1200/JCO.2014.58.8533
20. Loprinzi CL, Lacchetti C, Bleeker J, et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. *J Clin Oncol*. 2020;38(28):3325-3348. doi:10.1200/JCO.20.01399
21. Jordan B, Margulies A, Cardoso F, et al. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO-EONS-EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. *Ann Oncol*. 2020;31(10):1306-1319. doi:10.1016/j.anonc.2020.07.003
22. Greenlee H, Crew KD, Capodice J, et al. Randomized sham-controlled pilot trial of weekly electro-acupuncture for the prevention of taxane-induced peripheral neuropathy in women with

early stage breast cancer. *Breast Cancer Res Treat.* 2016;156(3):453-464. doi:10.1007/s10549-016-3759-2https://doi.org/10.1007/s10549-016-3759-2

- 23. Markman M, Lewis JL Jr, Saigo P, et al. Impact of age on survival of patients with ovarian cancer. *Gynecol Oncol.* 1993;49(2):236-239. doi:10.1006/gyno.1993.1113
- 24. Kanbayashi Y, Sakaguchi K, Nakatsukasa K, et al. Predictive factors for taxane acute pain syndrome determined by ordered logistic regression analysis. *Support Care Cancer.* 2019;27(7):2673-2677. doi:10.1007/s00520-018-4571-9
- 25. Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. *JAMA.* 2013;309(13):1359-1367. doi:10.1001/jama.2013.2813
- 26. Smith EM, Pang H, Ye C, et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): a secondary analysis of randomised controlled trial - CALGB/alliance 170601. *Eur J Cancer Care (Engl).* 2017;26(2):10.1111/ecc.12421. doi:10.1111/ecc.12421
- 27. Hammack JE, Michalak JC, Loprinzi CL, et al. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. *Pain.* 2002;98(1-2):195-203. doi:10.1016/s0304-3959(02)00047-7
- 28. Kautio AL, Haanpää M, Saarto T, Kalso E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. *J Pain Symptom Manage.* 2008;35(1):31-39. doi:10.1016/j.jpainsympman.2007.02.043
- 29. Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. *J Pain Symptom Manage.* 2014;47(1):166-173. doi:10.1016/j.jpainsympman.2013.02.018

Chapter 10

WOUND CARE IN GYNECOLOGIC ONCOLOGY

Zeynel Umut CANBABA¹
İrem KIRKAN CANBABA²

1. INTRODUCTION

Gynecologic oncology surgeries frequently involve extensive surgical incisions, pelvic tissue resections, lymphadenectomies, or even pelvic exenterations, all of which carry a substantial risk for impaired wound healing and postoperative morbidity. Patient-related factors such as obesity, diabetes mellitus, malnutrition, advanced age, and prior radiotherapy, along with surgery-related variables including prolonged operative duration, intraoperative blood loss, and bowel contamination, significantly increase susceptibility to surgical site infections (SSIs), fascial dehiscence, and other wound complications.[1, 2]

Globally, SSIs are reported in approximately 10–15% of gynecologic oncology procedures, contributing to increased hospitalization costs, delayed initiation of adjuvant chemotherapy or radiotherapy, higher readmission rates, and, in some cases, worsened oncologic outcomes [3]. Large multicenter observational studies have reported SSI incidences ranging from 2.3–8.1% following hysterectomy and 3–16% after cesarean sections [4]. Such data underscore the necessity for standardized, multidisciplinary, and evidence-based perioperative wound care protocols to improve patient safety, reduce morbidity, and ensure cost-effective oncologic care [5].

2. FUNDAMENTAL PRINCIPLES OF WOUND HEALING

Wound healing is a highly orchestrated biological process consisting of four overlapping yet distinct phases: hemostasis, inflammation, proliferation, and

¹ Specialist Doctor, Obstetrics and Gynecology, Isparta City Hospital, ucanbaba95@gmail.com, ORCID: iD: 0009-0007-6836-6729

² Res. Asst., General Surgery, Suleyman Demirel University, irem.krkn96@gmail.com, ORCID iD:0009-0007-8790-0405

8.CONCLUSION

Wound care in gynecologic oncology represents a critical determinant of postoperative outcomes, patient satisfaction, and oncologic timelines. Most wound complications are potentially preventable through meticulous preoperative risk assessment, adherence to evidence-based prophylactic measures, prompt diagnosis, and multidisciplinary management approaches.

Future directions emphasize the integration of advanced wound care technologies, personalized risk stratification models, and real-time infection surveillance systems to further reduce morbidity and improve quality of life for gynecologic oncology patients.

REFERENCES

1. Black, J.D., et al., *Surgical site infections in gynecology*. Obstetrical & Gynecological Survey, 2014. 69(8): p. 501-510.
2. Leszczyńska, A., et al., *The Integration of Artificial Intelligence into Robotic Cancer Surgery: A Systematic Review*. Journal of Clinical Medicine, 2025. 14(17): p. 6181.
3. Taylor, J.S., et al., *The DISINFEKT initiative: decreasing the incidence of surgical INFECTIONS in gynecologic oncology*. Annals of surgical oncology, 2017. 24(2): p. 362-368.
4. Yang, Z., et al., *Risk factors for surgical site infection in patients undergoing obstetrics and gynecology surgeries: A meta-analysis of observational studies*. Plos one, 2024. 19(3): p. e0296193.
5. Hoffman, B.L., et al., *Williams gynecology*. 2020: McGraw Hill Professional.
6. Öztaş, P., *YARA İYİLEŞMESİ, BAKIMI VE TEDAVİSİ*. Ankara Eğitim ve Araştırma Hastanesi Tip Dergisi, 2021. 54(2): p. 341-351.
7. Rock, J.A., H.W. Jones, and R.W. TeLinde, *Te Linde's operative gynecology*. 2008: wolters kluwer/lippincott Williams & wilkins.
8. Parker, W.H. and W.H. Wagner, *Gynecologic surgery and the management of hemorrhage*. Obstetrics and gynecology clinics of North America, 2010. 37(3): p. 427.
9. Pathak, A., et al., *Incidence and risk factors for surgical site infections in obstetric and gynecological surgeries from a teaching hospital in rural India*. Antimicrobial Resistance & Infection Control, 2017. 6(1): p. 66.
10. Quercia, V., et al., *Use of negative pressure wound therapy systems after radical Vulvectomy for advanced vulvar cancer*. Cancer Investigation, 2020. 38(8-9): p. 531-534.
11. Leitao Jr, M.M., et al., *Prophylactic negative pressure wound therapy after laparotomy for gynecologic surgery: a randomized controlled trial*. Obstetrics & Gynecology, 2021. 137(2): p. 334-341.
12. Doll, K., et al., *Preoperative quality of life and surgical outcomes in gynecologic oncology patients: a new predictor of operative risk?* Gynecologic oncology, 2014. 133(3): p. 546-551.
13. Hagedorn, C., et al., *Risk Factors for Surgical Wound Infection and Fascial Dehiscence After Open Gynecologic Oncologic Surgery: A Retrospective Cohort Study*. Cancers, 2024. 16(24): p. 4157.
14. Novetsky, A.P., et al., *A phase II trial of a surgical protocol to decrease the incidence of wound complications in obese gynecologic oncology patients*. Gynecologic oncology, 2014. 134(2): p. 233-237.

Chapter 11

THE ROLE OF BARIATRIC SURGERY IN GYNECOLOGIC ONCOLOGY

Zeynel Umut CANBABA¹
İrem KIRKAN CANBABA²

1. INTRODUCTION

Obesity has emerged as a global health concern and is recognized as a key risk factor for multiple chronic diseases—particularly cancer, metabolic, and cardiovascular disorders [1]. Among gynecologic malignancies, endometrial cancer stands out as the malignancy most strongly associated with obesity; for instance, every 5-unit increase in BMI has been linked to a 50–60% rise in endometrial cancer risk [1].

Excess adipose tissue in obesity triggers several critical mechanisms involved in carcinogenesis, including chronic inflammation, hyperinsulinemia, elevated estrogen production due to increased aromatase activity, and adipokine dysregulation [2]. Furthermore, increased organ volume in obese individuals has been hypothesized to expand the number of target cells susceptible to malignant transformation, thus potentially heightening carcinogenic risk [3].

Bariatric surgery is considered one of the most effective and durable interventions for correcting obesity-related metabolic disturbances. Beyond weight reduction, it has been associated with improved overall survival and decreased all-cause mortality in long-term follow-up studies [4].

¹ Specialist Doctor, Obstetrics and Gynecology, Isparta City Hospital, ucanbaba95@gmail.com, ORCID: iD: 0009-0007-6836-6729

² Res. Asst., General Surgery, Suleyman Demirel University, irem.krkn96@gmail.com, ORCID iD:0009-0007-8790-0405

Integration of ERAS protocols, VTE prophylaxis, nutritional optimization, and pharmacologic monitoring into perioperative care is essential.

Future research should focus on long-term oncologic outcomes, fertility preservation, pharmacokinetics, and combined surgical approaches to establish comprehensive, evidence-based clinical pathways.

REFERENCES

1. Webb, P.M. Obesity and gynecologic cancer etiology and survival. in American Society of Clinical Oncology Educational book. American Society of Clinical Oncology. Annual Meeting. 2013.
2. Agnew, H.J., S.J. Kitson, and E.J. Crosbie, Gynecological malignancies and obesity. Best Practice & Research Clinical Obstetrics & Gynaecology, 2023. 88: p. 102337.
3. Zhang, H.G.Y., et al., Organ size increases with obesity and correlates with cancer risk. arXiv preprint arXiv:2005.13112, 2020.
4. Ross, R.C., et al., The role of bariatric and metabolic surgery in the development, diagnosis, and treatment of endometrial cancer. Frontiers in surgery, 2022. 9: p. 943544.
5. Park, I.S., et al., Risk of female-specific cancers according to obesity and menopausal status in 2.7 million Korean women: similar trends between Korean and Western women. The Lancet Regional Health-Western Pacific, 2021. 11.
6. Simancas-Racines, D., et al., Obesity and endometrial cancer: biological mechanisms, nutritional strategies, and clinical perspectives. Food and Agricultural Immunology, 2025. 36(1): p. 2510961.
7. Wilson, R.B., D. Lathigara, and D. Kaushal, Systematic review and meta-analysis of the impact of bariatric surgery on future cancer risk. International journal of molecular sciences, 2023. 24(7): p. 6192.
8. Bruno, D.S. and N.A. Berger, Impact of bariatric surgery on cancer risk reduction. Annals of Translational Medicine, 2020. 8(Suppl 1): p. S13.
9. Courcoulas, A.P., Bariatric Surgery and Cancer Risk. JAMA, 2022. 327(24): p. 2400-2402.
10. Mayo Clinic. Sleeve gastrectomy (vertical sleeve gastrectomy): About. Mayo Clinic; 2024. Available from: <https://www.mayoclinic.org/tests-procedures/sleeve-gastrectomy/about/pac-20385183>
11. Thaher, O., et al., Evaluation of the effect of sleeve gastrectomy versus Roux-en-Y gastric bypass in patients with morbid obesity: multicenter comparative study. Langenbeck's Archives of Surgery, 2024. 409(1): p. 156.
12. Au, C., et al., Surgical Strategies for the Management of Obesity. Methodist DeBakey Cardiovascular Journal, 2025. 21(2): p. 84.
13. Stahl, J.M. and S. Malhotra, Obesity surgery indications and contraindications, in StatPearls [Internet]. 2023, StatPearls Publishing.
14. Eisenberg, D., et al., 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): indications for metabolic and bariatric surgery. Surgery for Obesity and Related Diseases, 2022. 18(12): p. 1345-1356.
15. Stenberg, E., et al., Guidelines for perioperative care in bariatric surgery: enhanced recovery after surgery (ERAS) society recommendations: a 2021 update. World journal of surgery, 2022. 46(4): p. 729-751.
16. Rudiman, R. and R.V. Hanafi, Perioperative Care for Bariatric Surgery. Diagnostics, 2024. 14(18): p. 2095.

17. De Camilli, A.R., et al., Perioperative considerations for cancer patients with obesity: A narrative review. *Trends in Anaesthesia and Critical Care*, 2022. 46: p. 33-41.
18. Schroeder, R., D.T. HARRISON, and S.L. McGRAW, Treatment of adult obesity with bariatric surgery. *American family physician*, 2016. 93(1): p. 31-37.
19. Rustgi, V.K., et al., Bariatric surgery reduces cancer risk in adults with nonalcoholic fatty liver disease and severe obesity. *gastroenterology*, 2021. 161(1): p. 171-184. e10.
20. Ward, K.K., et al., Bariatric surgery decreases the risk of uterine malignancy. *Gynecologic oncology*, 2014. 133(1): p. 63-66.
21. Anveden, Å., et al., Long-term incidence of female-specific cancer after bariatric surgery or usual care in the Swedish Obese Subjects Study. *Gynecologic Oncology*, 2017. 145(2): p. 224-229.
22. Aminian, A., et al., Association of bariatric surgery with cancer risk and mortality in adults with obesity. *Jama*, 2022. 327(24): p. 2423-2433.
23. Syn, N.L., et al., Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. *The Lancet*, 2021. 397(10287): p. 1830-1841.
24. Lin, J., et al., Effect of bariatric surgery on endometrial cancer regression as part of fertility sparing treatment. *Cancer Reports*, 2023. 6(9): p. e1857.
25. Perrone, A.M., et al., Synergizing health: combined gynecological and bariatric robotic surgery for endometrial cancer in obese women. *International Journal of Gynecological Cancer*, 2024. 34(6): p. 956-957.
26. Eisenberg, D., et al., 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) indications for metabolic and bariatric surgery. 2023, Springer.
27. Nelson, G., et al., Enhanced recovery after surgery (ERAS[®]) society guidelines for gynecologic oncology: addressing implementation challenges-2023 update. *Gynecologic oncology*, 2023. 173: p. 58-67.
28. Nelson, G., et al., Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery After Surgery (ERAS) Society recommendations—2019 update. *International Journal of Gynecological Cancer*, 2019. 29(4): p. 651-668.
29. Key, N.S., et al., Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO guideline update. *Journal of Clinical Oncology*, 2023. 41(16): p. 3063-3071.
30. Mechanick, J.I., et al., Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. *Surgery for Obesity and Related Diseases*, 2020. 16(2): p. 175-247.
31. Parrott, J., et al., American Society for Metabolic and Bariatric Surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: micronutrients. *Surgery for Obesity and Related Diseases*, 2017. 13(5): p. 727-741.
32. Oaknin, A., et al., Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. *Annals of oncology*, 2022. 33(9): p. 860-877.
33. Mooney, S.S. and P. Sumithran, Does weight loss in women with obesity induce regression of endometrial hyperplasia? A systematic review. *European Journal of Obstetrics & Gynecology and Reproductive Biology*, 2023. 288: p. 49-55.
34. Mezzapesa, F., et al., Combined robotic surgery for concomitant treatment of endometrial cancer and obesity. *Surgical endoscopy*, 2024. 38(11): p. 6691-6699.
35. Kingma, J.S., et al., Oral drug dosing following bariatric surgery: general concepts and specific dosing advice. *British Journal of Clinical Pharmacology*, 2021. 87(12): p. 4560-4576.

The Role of Bariatric Surgery in Gynecologic Oncology

36. Mercado, A., et al., Effects of bariatric surgery on drug pharmacokinetics—Preclinical studies. *Frontiers in Pharmacology*, 2023. 14: p. 1133415.
37. MacKintosh, M.L., et al., The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk. *International journal of cancer*, 2019. 144(3): p. 641-650.
38. Kim, J., et al., Long-Term Cancer Outcomes Following Bariatric Surgery: A Comparative Analysis of Surgical Procedures. *Cancers*, 2024. 16(22): p. 3730.
39. Liu, Y.-N., et al., Bariatric surgery reduces colorectal cancer incidence in obese individuals: Systematic review and meta-analysis. *World Journal of Gastrointestinal Surgery*, 2023. 15(10): p. 2331.

Chapter 12

PRINCIPLES OF GENITAL AESTHETIC SURGERY IN GYNECOLOGICAL ONCOLOGY

Özgür Ozan CEYLAN¹

INTRODUCTION

In the contemporary context, aesthetic and reconstructive surgery is a field that is attracting increasing interest in the domain of women's health. Genital aesthetic surgery is a comprehensive approach that aims to address not only cosmetic expectations but also functional and psychological needs (1).

In the domain of gynecologic oncology, these surgical interventions assume a pivotal role in addressing aesthetic, anatomical, and functional deformities that emerge subsequent to cancer treatments, particularly in the vulvar and vaginal regions. Aggressive procedures, including radical surgeries, radiotherapy, and recurrence surgeries, have been observed to result in scarring, tissue loss, and atrophy in genital tissues (2, 3).

These anatomical deficiencies are frequently associated with sexual dysfunction, altered body image, and psychological effects. Problems such as loss of sexual function, dyspareunia, and decreased libido are particularly prevalent among patients treated for gynecologic cancer, significantly impacting their quality of life (4). Consequently, both life expectancy and quality of life are of equal significance for patients suffering from gynecologic oncology.

Whilst the integration of genital aesthetic surgery into oncology practice contributes to physical recovery, psychological integrity, and the preservation of sexual function, the surgical techniques employed should be planned with consideration of both oncologic safety and functional and aesthetic expectations.

The present book chapter will provide a comprehensive overview of the fundamentals of genital aesthetic surgery in gynecologic oncology patients,

¹ Turgutlu State Hospital, Department of Obstetrics and Gynecology, Manisa, ozgurozanceylan@gmail.com.tr, ORCID iD:0000-0001-5054-8486

PROM-integrated survivorship. Routine use of validated tools (e.g., FSFI, BIS, HADS) to benchmark recovery and trigger psychosexual care and pelvic-floor rehabilitation within MDT pathways (19).

Training and equity. Standardized training and equitable access should frame reconstruction as core survivorship care rather than elective luxury (21).

CONCLUSION

The integration of genital aesthetic and reconstructive surgery into gynecologic oncology marks a pivotal advancement in comprehensive cancer care. While the primary goal of oncologic surgery remains disease eradication, the physical and psychological sequelae of radical treatments must no longer be overlooked. Vulvar disfigurement, vaginal shortening or stenosis, and pelvic floor defects can profoundly affect a woman's sexual function, body image, and overall well-being.

By applying principles of reconstructive surgery, aesthetics, and psychosexual rehabilitation, clinicians can support not only survival but also recovery of identity, femininity, and autonomy. These procedures, when guided by ethical standards, multidisciplinary collaboration, and patient-centered communication, enable women to regain a sense of bodily wholeness without compromising oncologic safety.

Looking ahead, advancements in minimally invasive techniques, regenerative medicine, and personalized surgical planning promise to further refine outcomes and expand access to these life-enhancing procedures. As survivorship becomes a cornerstone of modern cancer care, genital aesthetic surgery must be embraced not as an optional luxury, but as a fundamental component of restoring dignity, function, and quality of life for women affected by gynecologic malignancies.

REFERENCES

1. Goodman MP. Female genital cosmetic and plastic surgery: a review. *J Sex Med.* 2011;8(6):1813-25.
2. Di Donato V, Bracchi C, Cigna E, Domenici L, Musella A, Giannini A, et al. Vulvo-vaginal reconstruction after radical excision for treatment of vulvar cancer: Evaluation of feasibility and morbidity of different surgical techniques. *Surg Oncol.* 2017;26(4):511-21.
3. Zhang W, Zeng A, Yang J, Cao D, He X, Wang X, et al. Outcome of vulvar reconstruction in patients with advanced and recurrent vulvar malignancies. *BMC Cancer.* 2015;15(1):851.
4. Bodurka DC, Sun CC. Sexual Function after Gynecologic Cancer. *Obstetrics and Gynecology Clinics of North America.* 2006;33(4):621-30.
5. Zeng A, Qiao Q, Zhao R, Song K, Long X. Anterolateral thigh flap-based reconstruction for oncologic vulvar defects. *Plast Reconstr Surg.* 2011;127(5):1939-45.
6. Höckel M, Dornhöfer N. Vulvovaginal reconstruction for neoplastic disease. *Lancet Oncol.* 2008;9(6):559-68.

7. Berek JS, Hacker NF. Berek and hacker's gynecologic oncology: Sixth edition 2014. 1-944 p.
8. Concin N, Matias-Guiu X, Vergote I, Cibula D, Mirza MR, Marnitz S, et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. *Int J Gynecol Cancer*. 2021;31(1):12-39.
9. Hand LC, Maas TM, Baka N, Mercier RJ, Greaney PJ, Rosenblum NG, et al. Utilizing V-Y fasciocutaneous advancement flaps for vulvar reconstruction. *Gynecol Oncol Rep*. 2018;26:24-8.
10. Peled IJ. Reconstruction of the vulva with V-Y advanced myocutaneous gracilis flap. *Plast Reconstr Surg*. 1990;86(5):1014-6.
11. Sajad W, Hamid R. Outcome of split thickness skin grafting and multiple z-plasties in postburn contractures of groin and perineum: a 15-year experience. *Plast Surg Int*. 2014;2014:358526.
12. Deldar-Pesikhani M, Ghanbari Z, Shahrbabaki FS, Nassiri S, Raznahan M, Shokrpour M. Comparison of modified McIndoe and Davydov vaginoplasty in patients with MRKH syndrome in terms of anatomical results, sexual performance and satisfaction. *J Family Med Prim Care*. 2022;11(8):4614-8.
13. Kisu I, Iida M, Nakamura K, Banno K, Shiraishi T, Tokuoka A, et al. Laparoscopic Vaginoplasty Procedure Using a Modified Peritoneal Pull-Down Technique with Uterine Strand Incision in Patients with Mayer-Rokitansky-Küster-Hauser Syndrome: Kisu Modification. *Journal of Clinical Medicine*. 2021;10(23):5510.
14. Cordeiro PG, Pusic AL, Disa JJ. A classification system and reconstructive algorithm for acquired vaginal defects. *Plast Reconstr Surg*. 2002;110(4):1058-65.
15. Iglesia CB, Yurteri-Kaplan L, Alinsod R. Female genital cosmetic surgery: a review of techniques and outcomes. *Int Urogynecol J*. 2013;24(12):1997-2009.
16. Jensen PT, Groenvold M, Klee MC, Thranov I, Petersen MA, Machin D. Early-stage cervical carcinoma, radical hysterectomy, and sexual function. A longitudinal study. *Cancer*. 2004;100(1):97-106.
17. Barlow EL, Hacker NF, Hussain R, Parmenter G. Sexuality and body image following treatment for early-stage vulvar cancer: a qualitative study. *J Adv Nurs*. 2014;70(8):1856-66.
18. Hellinga J, Te Grootenhuis NC, Werker PMN, de Bock GH, van der Zee AGJ, Oonk MHM, et al. Quality of Life and Sexual Functioning After Vulvar Reconstruction With the Lotus Petal Flap. *Int J Gynecol Cancer*. 2018;28(9):1728-36.
19. Carter J, Lacchetti C, Andersen BL, Barton DL, Bolte S, Damast S, et al. Interventions to Address Sexual Problems in People With Cancer: American Society of Clinical Oncology Clinical Practice Guideline Adaptation of Cancer Care Ontario Guideline. *J Clin Oncol*. 2018;36(5):492-511.
20. Beauchamp T, Childress J. Principles of Biomedical Ethics: Marking Its Fortieth Anniversary. *Am J Bioeth*. 2019;19(11):9-12.
21. Elective Female Genital Cosmetic Surgery: ACOG Committee Opinion, Number 795. *Obstet Gynecol*. 2020;135(1):e36-e42.
22. Figo Committee For The Ethical Aspects Of Human R, Women's H. Ethical considerations regarding requests and offering of cosmetic genital surgery. *Int J Gynaecol Obstet*. 2015;128(1):85-6.
23. ACOG Committee Opinion No. 729: Importance of Social Determinants of Health and Cultural Awareness in the Delivery of Reproductive Health Care. *Obstet Gynecol*. 2018;131(1):e43-e8.
24. ACOG Committee Opinion No. 493: Cultural sensitivity and awareness in the delivery of health care. *Obstet Gynecol*. 2011;117(5):1258-61.

Chapter 13

PAIN MANAGEMENT, ENHANCED RECOVERY AFTER SURGERY (ERAS) PROTOCOL, AND INTENSIVE CARE IN GYNECOLOGIC CANCER SURGERY

Melda İŞEVİ¹
Özkul Yılmaz ÇOLAK²

1. INTRODUCTION

1.1. Scope of Gynaecologic Cancer Surgery

The scope of gynaecologic oncology surgery has expanded and evolved markedly in recent years. This transformation has been driven by technological advancements, a deeper understanding of tumor biology, and the emergence of individualised treatment approaches. Presently, gynecologic oncologists are proficient in a broad spectrum of surgical procedures, ranging from minimally invasive surgery for **early-stage cancers**—such as laparoscopic or robot-assisted hysterectomy and staging procedures—to complex multivisceral resections for advanced-stage disease. (1, 2).

Minimally invasive surgery has become the preferred approach for early stage endometrial and cervical cancers due to its association with reduced postoperative pain, shorter hospital stays, and lower complication rates (1, 3). However, open surgery (laparotomy) remains indispensable in advanced malignancies requiring extensive cytoreductive procedures, including bowel resection, upper abdominal surgery, or pelvic exenteration (2).

In addition, innovative techniques such as sentinel lymph node mapping and fertility-sparing surgery have contributed to the diversification of surgical approaches, particularly aiming to improve quality of life in younger patients (1, 4). In cases requiring extensive resections, multidisciplinary collaboration with

¹ MD, Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Ondokuz Mayıs University Faculty of Medicine, drmeldaevi@gmail.com, ORCID iD: 0000-0001-5308-7662

² MD, Department of Anesthesiology and Reanimation, Division of Intensive Care Medicine, Ondokuz Mayıs University Faculty of Medicine, ozkuleolak@gmail.com, ORCID iD: 0000-0003-2846-6358

gynaecologic oncology teams will play a decisive role in optimising both patient satisfaction and oncological outcomes.

REFERENCES

1. Nelson G, Bakkum-Gamez J, Kalogera E, Glaser G, Altman A, Meyer LA, et al. Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery After Surgery (ERAS) Society recommendations-2019 update. *Int J Gynecol Cancer*. 2019;29(4):651-68.
2. Hoffman MS, Chi DS, Clarke-Pearson DL, Cliby W, Creasman W, Underwood PB, Jr. Surgical training in gynecologic oncology: Past, present, future. *Gynecol Oncol*. 2020;158(1):188-93.
3. Kanbergs A, Melamed A, Viveros-Carreño D, Wu CF, Wilke RN, Zamorano A, et al. Surgical Deescalation Within Gynecologic Oncology. *JAMA Netw Open*. 2025;8(1):e2453604.
4. Lyons YA, Stephan JM, Gonzalez Bosquet J, Goodheart MJ. Gynecologic Oncology: Challenges of Minimally Invasive Surgery In a Field of Maximal Complexities. *Clin Obstet Gynecol*. 2020;63(1):30-9.
5. Jurado M, Chiva L, Tinelli G, Alcazar JL, Chi DS. The role of oncovascular surgery in gynecologic oncology surgery. *Int J Gynecol Cancer*. 2022;32(4):553-9.
6. Patel K, Shergill S, Vadivelu N, Rajput K. Analgesia for Gynecologic Oncologic Surgeries: A Narrative Review. *Curr Pain Headache Rep*. 2022;26(1):1-13.
7. Cuéllar-Guzmán LF, Guerra-De la Garza JM, Pérez-González OR. Perioperative Pain Management in Gynecologic Oncology Surgery. *Gaceta Mexicana de Oncología*. 2017;16(2):124-9.
8. Nieves-Neira W, Angioli R, Penalver M. Pharmacologic Pain Management in Gynecologic Oncology. *Chemotherapy for Gynecological Neoplasms: Current Therapy and Novel Approaches*: CRC Press; 2004. p. 275-96.
9. Paice JA, Ferrell B. The management of cancer pain. *CA: a cancer journal for clinicians*. 2011;61(3):157-82.
10. Wu W, He X, Li S, Jin M, Ni Y. Pain nursing for gynecologic cancer patients. *Frontiers in oncology*. 2023;13:1205553.
11. Weston E, Raker C, Huang D, Parker A, Robison K, Mathews C. The association between mindfulness and postoperative pain: a prospective cohort study of gynecologic oncology patients undergoing minimally invasive hysterectomy. *Journal of Minimally Invasive Gynecology*. 2020;27(5):1119-26. e2.
12. Lee B, Kim K, Ahn S, Shin H-J, Suh DH, No JH, et al. Continuous wound infiltration system for postoperative pain management in gynecologic oncology patients. *Archives of gynecology and obstetrics*. 2017;295(5):1219-26.
13. Ohnesorge H, Günther V, Grünewald M, Maass N, Alkatout İ. Postoperative pain management in obstetrics and gynecology. *Journal of the Turkish German Gynecological Association*. 2020;21(4):287.
14. Ben Arye E, Segev Y, Galil G, Marom I, Gressel O, Stein N, et al. Acupuncture during gynecological oncology surgery: A randomized controlled trial assessing the impact of integrative therapies on perioperative pain and anxiety. *Cancer*. 2023;129(6):908-19.
15. Smith Jr TW, Wang X, Singer MA, Godellas CV, Vaince FT. Enhanced recovery after surgery: a clinical review of implementation across multiple surgical subspecialties. *The American Journal of Surgery*. 2020;219(3):530-4.
16. Golder HJ, Papalois V. Enhanced recovery after surgery: history, key advancements and developments in transplant surgery. *Journal of clinical medicine*. 2021;10(8):1634.
17. Stenberg E, dos Reis Falcão LF, O’Kane M, Liem R, Pournaras DJ, Salminen P, et al. Guidelines for perioperative care in bariatric surgery: enhanced recovery after surgery (ERAS) society recommendations: a 2021 update. *World journal of surgery*. 2022;46(4):729-51.

18. Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. *The American journal of surgery*. 2002;183(6):630-41.
19. Nelson G, Fotopoulos C, Taylor J, Glaser G, Bakkum-Gamez J, Meyer L, et al. Enhanced recovery after surgery (ERAS®) society guidelines for gynecologic oncology: addressing implementation challenges-2023 update. *Gynecologic oncology*. 2023;173:58-67.
20. Zhou J, Du R, Wang L, Wang F, Li D, Tong G, et al. The application of enhanced recovery after surgery (ERAS) for patients undergoing bariatric surgery: a systematic review and meta-analysis. *Obesity Surgery*. 2021;31(3):1321-31.
21. Echeverria-Villalobos M, Stoica N, Todeschini AB, Fiorda-Diaz J, Uribe AA, Weaver T, et al. Enhanced recovery after surgery (ERAS): a perspective review of postoperative pain management under ERAS pathways and its role on opioid crisis in the United States. *The Clinical journal of pain*. 2020;36(3):219-26.
22. Pairat K, Kittikhungovit S, Niwatkittipon P, Yodaun K, Benjakul N. Correlation between Various Factors and Pain in Gynecological Cancer Patients within the First 24 Hours Post-Operation: A Study in an Urban-Based Tertiary Medical Center: Impacting Pain Factors in Gynecological Cancer Patients after Surgery. *Vajira Medical Journal: Journal of Urban Medicine*. 2024;68(2):e265170-e.
23. Agustiansyah P, Fitrisyah A, Nopradilova S. Pain in Gynecological Cancer. *Bioscientia Medici: Journal of Biomedicine and Translational Research*. 2021;5(6):552-70.
24. Matthiessen H. Pain treatment in gynaecological cancer. *Postgraduate Medical Journal*. 1991;67:S26-30.
25. Kirsch JL, Robinson ME, McCrae CS, Kacel EL, Wong SS, Patidar S, et al. Associations among sleep latency, subjective pain, and thermal pain sensitivity in gynecologic cancer. *Pain Medicine*. 2020;21(1):5-12.
26. Mazurek P, Aftyka A. Anxiety and depression versus pain sensation in patients with gynecological cancers. *Nursing in the 21st Century*. 2023;22(3 (84)):170-80.
27. Black LL, Conroy K, Lustberg M, Salani R, Andersen BL, Carpenter KM. Association of sexual pain and psychological factors among gynecologic and breast cancer patients: application of components of the fear-avoidance model of chronic pain. *Journal of Behavioral Medicine*. 2025;48(3):536-43.
28. Hammer MJ, Cooper BA, Chen L-M, Wright AA, Pozzar R, Blank SV, et al. Identification of distinct symptom profiles in patients with gynecologic cancers using a pre-specified symptom cluster. *Supportive Care in Cancer*. 2023;31(8):485.
29. Rannestad T, Skjeldstad FE. Co-morbidity and pain sites in long-term gynecological cancer survivors and women in the general population. *Gynecologic oncology*. 2012;127(1):168-71.
30. Stone R, Carey E, Fader AN, Fitzgerald J, Hammons L, Nensi A, et al. Enhanced recovery and surgical optimization protocol for minimally invasive gynecologic surgery: an AAGL white paper. *Journal of minimally invasive gynecology*. 2021;28(2):179-203.
31. Steenhagen E. Enhanced recovery after surgery: it's time to change practice! *Nutrition in Clinical Practice*. 2016;31(1):18-29.
32. Peden CJ, Aggarwal G, Aitken RJ, Anderson ID, Bang Foss N, Cooper Z, et al. Guidelines for perioperative care for emergency laparotomy Enhanced Recovery After Surgery (ERAS) Society recommendations: part 1—preoperative: diagnosis, rapid assessment and optimization. *World journal of surgery*. 2021;45(5):1272-90.
33. Riad AM, Barry A, Knight SR, Arbaugh CJ, Haque PD, Weiser TG, et al. Perioperative optimisation in low-and middle-income countries (LMICs): A systematic review and meta-analysis of enhanced recovery after surgery (ERAS). *Journal of Global Health*. 2023;13:04114.
34. Jalanko T, Koskinen I, Sammaltupa H, Vasarainen H, Hemminki O, Sairanen J. IP24-16 UPG-RADED PREOPERATIVE MEDICAL OPTIMIZATION AND PREHABILITATION IN ERAS RADICAL CYSTECTOMY: A PROPENSITY SCORE MATCHED ANALYSIS OF CLINICAL

OUTCOMES COMPARED TO BASIC ERAS AND STANDARD CARE PROTOCOLS. Journal of Urology. 2025;213(5S):e1269.

- 35. Zhao J, Donovan HS, Sereika S, Campbell G. Dynamic Associations Between Daily Pain and Mood during Chemotherapy for Gynecologic Cancers. Pain Management Nursing. 2024;25(1):56-61.
- 36. Carrasquilla A, Asfaw ZK, Tomalin LE, D'Amico RS, Hervey-Jumper SL, Ivan ME, et al. Enhanced Recovery After Adult Brain Tumor Surgery: A Proposed Succinct Evidence-Based Protocol. Neurosurgery. 2022;10:1227.
- 37. Geng Z, Wang B, Zhang Y, Yan X, Hu J, Cui R, et al. Preemptive multimodal analgesia for gynecologic oncology patients undergoing laparotomy: a randomized controlled trial. Frontiers in Medicine. 2024;11:1427548.
- 38. Arynov A, Abdurakhmanova A, Abildayeva A, Seidalieva E, Chursin V. NEW ASPECTS IN THE USE OF MULTIMODAL ANALGESIA DURING SURGICAL INTERVENTIONS IN CANCER PATIENTS: A LITERATURE REVIEW. Oncologia i radiologia Kazakhstana. 2025;75:101-9.
- 39. Peng J, Shen X, Deng Y, Yang X, Buwu Y. Application of Multimodal Analgesia Based on the ERAS Concept in Patients Undergoing Laparoscopic Surgery for Gynecological Tumors. Advances in Obstetrics and Gynecology Research. 2023;1(2):1-7.
- 40. Griffiths JD, Middle JV, Barron FA, Grant SJ, Popham PA, Royse CF. Transversus abdominis plane block does not provide additional benefit to multimodal analgesia in gynecological cancer surgery. Anesthesia & Analgesia. 2010;111(3):797-801.
- 41. Munro A, Sjaus A, George RB. Anesthesia and analgesia for gynecological surgery. Current Opinion in Anesthesiology. 2018;31(3):274-9.
- 42. Fassoulaki A, Triga A, Melemeni A, Sarantopoulos C. Multimodal analgesia with gabapentin and local anesthetics prevents acute and chronic pain after breast surgery for cancer. Anesth Analg. 2005;101(5):1427-32.
- 43. An B, Dong W. Effects of multimodal analgesia of flurbiprofen axetil, nalbuphine and patient controlled intravenous analgesia on inflammatory factor levels and stress response in patients after laparoscopic radical gynecological malignancy surgery. Pak J Pharm Sci. 2022;35(2(Special)):641-7.
- 44. Kitagawa H, Manabe T, Yamada Y, Sato H, Takesue S, Hiraki M, et al. A prospective randomized study of multimodal analgesia combined with single injection transversus abdominis plane block versus epidural analgesia against postoperative pain after laparoscopic colon cancer surgery. Int J Colorectal Dis. 2023;39(1):12.
- 45. Dong W, An B, Wang Y, Cui X, Gan J. Effect of multimodal analgesia on gynecological cancer patients after radical resection. Am J Transl Res. 2021;13(4):2686-93.
- 46. Joshi GP, Kehlet H. Postoperative pain management in the era of ERAS: An overview. Best Pract Res Clin Anaesthesiol. 2019;33(3):259-67.
- 47. Schultz KP, Kaplan J, Rappaport NH. The Nuts and Bolts of a Successful Non-Narcotic Perioperative Enhanced Recovery After Surgery Protocol. Aesthet Surg J. 2021;41(11):Np1769-np74.
- 48. Kaushal B, Magoor R. ERAS approach and perioperative patient comfort: A closer look! Indian J Anaesth. 2020;64(7):647-8.
- 49. A. M. Perioperative pain management. In: R. URL, editor. Pain Management for Clinicians: A Guide to Assessment and Treatment. Cham: Springer; 2020. p. 227-41.
- 50. Kaye AD, Chernobylsky DJ, Thakur P, Siddaiah H, Kaye RJ, Eng LK, et al. Dexmedetomidine in enhanced recovery after surgery (ERAS) protocols for postoperative pain. Current pain and headache reports. 2020;24(5):21.
- 51. Simpson JC, Bao X, Agarwala A. Pain management in enhanced recovery after surgery (ERAS) protocols. Clinics in colon and rectal surgery. 2019;32(02):121-8.
- 52. Gregory AJ, Arora RC, Chatterjee S, Crisafi C, Morton-Bailey V, Rea A, et al. Enhanced Recovery After Surgery (ERAS) cardiac turnkey order set for perioperative pain management

in cardiac surgery: proceedings from the American Association for Thoracic Surgery (AATS) ERAS Conclave 2023. *JTCVS open*. 2024;22:14-24.

- 53. Chen Q, Chen E, Qian X. A narrative review on perioperative pain management strategies in enhanced recovery pathways—The past, present and future. *Journal of Clinical Medicine*. 2021;10(12):2568.
- 54. McCall E, Shores R, McDonough J. The effectiveness of ERAS guidelines in reducing postoperative pain. *Worldviews on Evidence-Based Nursing*. 2022;19(4):338-40.
- 55. Wang J, Xu X, Xu J. Application of single-port procedure and ERAS management in the laparoscopic myomectomy. *BMC Women's Health*. 2023;23(1):401.
- 56. Mestdagh F, Steyaert A, Lavand'homme P. Cancer pain management: a narrative review of current concepts, strategies, and techniques. *Current Oncology*. 2023;30(7):6838-58.
- 57. Hacker KE, Reynolds RK, Uppal S. Ongoing strategies and updates on pain management in gynecologic oncology patients. *Gynecologic Oncology*. 2018;149(2):410-9.
- 58. Hui D, Bruera E. A personalized approach to assessing and managing pain in patients with cancer. *Journal of Clinical Oncology*. 2014;32(16):1640-6.
- 59. Scarborough BM, Smith CB. Optimal pain management for patients with cancer in the modern era. *CA: a cancer journal for clinicians*. 2018;68(3):182-96.
- 60. Bisch SP, Nelson G. Outcomes of enhanced recovery after surgery (ERAS) in gynecologic oncology: a review. *Current Oncology*. 2022;29(2):631-40.
- 61. Miralpeix E, Nick AM, Meyer LA, Cata J, Lasala J, Mena GE, et al. A call for new standard of care in perioperative gynecologic oncology practice: impact of enhanced recovery after surgery (ERAS) programs. *Gynecologic oncology*. 2016;141(2):371-8.
- 62. Bogani G, Sarpietro G, Ferrandina G, Gallotta V, Donato VD, Ditto A, et al. Enhanced recovery after surgery (ERAS) in gynecology oncology. *European Journal of Surgical Oncology*. 2021;47(5):952-9.
- 63. Boitano TK, Smith HJ, Rushton T, Johnston MC, Lawson P, Leath III CA, et al. Impact of enhanced recovery after surgery (ERAS) protocol on gastrointestinal function in gynecologic oncology patients undergoing laparotomy. *Gynecologic Oncology*. 2018;151(2):282-6.
- 64. Plasencia E, Mamani SC, Schwer D, Goicoechea JC. Decreased Narcotic Use After the Implementation of ERAS Guidelines in Gynecologic Oncology at an Academic Center [24H]. *Obstetrics & Gynecology*. 2020;135:87S.
- 65. Brown ML, Simpson V, Clark AB, Matossian MD, Holman SL, Jernigan AM, et al. ERAS implementation in an urban patient population undergoing gynecologic surgery. *Best Practice & Research Clinical Obstetrics & Gynaecology*. 2022;85:1-11.
- 66. Bhandoria GP, Bhandarkar P, Ahuja V, Maheshwari A, Sekhon RK, Gultekin M, et al. Enhanced Recovery After Surgery (ERAS) in gynecologic oncology: an international survey of peri-operative practice. *International Journal of Gynecological Cancer*. 2020;30(10):1471-8.
- 67. Xue FS, Yang WH, Li CW. Assessing the impacts of integrative therapies on pain and anxiety after gynecological oncology surgery. *Cancer* (0008543X). 2023;129(12).
- 68. Aubrey C, Nelson G. Enhanced Recovery after Surgery (ERAS) for minimally invasive gynecologic oncology surgery: a review. *Current Oncology*. 2023;30(10):9357-66.
- 69. Krawczyk P, Trojnarska D, Baran R, Lonic T, Swistek R, Tyszecki P, et al. Postoperative gynecologic oncology admissions to intensive care unit in the tertiary care center: an eight-year retrospective study. *Ginekologia Polska*. 2023;94(8):599-604.
- 70. Arslan HN, Bozkul G, Celik SS. Perioperative nursing care of patients with oncology surgery in intensive care unit: Systematic review. *Journal of Critical Care*. 2024;81:154614.
- 71. Thomakos N, Prodromidou A, Haidopoulos D, Machairas N, Rodolakis A. Postoperative Admission in Critical Care Units Following Gynecologic Oncology Surgery: Outcomes Based on a Systematic Review and Authors' Recommendations. *in vivo*. 2020;34(5):2201-8.
- 72. Al-Niaimi AN, Ahmed M, Burish N, Chackmakchy SA, Seo S, Rose S, et al. Intensive postoperative glucose control reduces the surgical site infection rates in gynecologic oncology patients. *Gynecologic oncology*. 2015;136(1):71-6.

73. Farge D, Frere C, Connors JM, Khorana AA, Kakkar A, Ay C, et al. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. *The Lancet Oncology*. 2022;23(7):e334-e47.
74. Boban AB, Strike A, Patel D, Rynarzewska A. Evaluating hemoglobin thresholds for blood transfusions in oncology patients admitted in the intensive care unit. *American Society of Clinical Oncology*; 2024.
75. Dzik WS, Healy B, Roth M, Paik H, Brunker P, Ruby K, et al. Beyond hemoglobin thresholds: A retrospective cohort analysis of RBC transfusion decisions in ICU patients. *Crit Care Med*. 2025;53:e1235-e46.
76. Park J-Y, Kang OJ, Lee Y-Y, Kim YS. A prospective randomized controlled trial evaluating the safety and efficacy of patient blood management program in patients with gynecologic cancer (KGOG 4011/PBM). *International Journal of Gynecological Cancer*. 2023;33(7):1140-4.
77. Yang Y, Chen J, Wen Q, Jin G, Liu F, Yu L, et al. Effects of preoperative neoadjuvant chemotherapy on postoperative delirium in patients with gynecological tumor surgery: an observational study. *Journal of Cancer Research and Clinical Oncology*. 2024;150(11):497.
78. Mossie A, Regasa T, Neme D, Awoke Z, Zemedkun A, Hailu S. Evidence-based guideline on management of postoperative delirium in older people for low resource setting: systematic review article. *International Journal of General Medicine*. 2022;4053-65.
79. Su X, Meng Z-T, Wu X-H, Cui F, Li H-L, Wang D-X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. *The Lancet*. 2016;388(10054):1893-902.
80. Chichura A, Chambers LM, Costales AB, Yao M, Gruner M, Morton M, et al. Impact of intra-operative factors upon peri-operative outcomes in women undergoing hyperthermic intraperitoneal chemotherapy for gynecologic cancer. *Gynecologic Oncology*. 2021;161(1):194-201.
81. Raspé C, Flöther L, Schneider R, Bucher M, Piso P. Best practice for perioperative management of patients with cytoreductive surgery and HIPEC. *European Journal of Surgical Oncology (EJSO)*. 2017;43(6):1013-27.
82. Pintado MC, Lasa Unzúe I, Gómez Sanz R, Diez Alonso M, Ortega MA, Álvarez de Mon M, et al. Hematological alterations after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. *Journal of Clinical Medicine*. 2023;12(13):4323.

Chapter 14

GYNECOLOGICAL CANCERS AND EXERCISE

Sevgi SELEN¹

INTRODUCTION

Female cancers encompass malignancies of the endometrium, cervix, ovaries, fallopian tubes, vulva, and vagina, and are collectively referred to as gynecological cancers. Numerous studies have explored the relationship between exercise and cancer, demonstrating that physical activity may have diverse effects on cancer prevention, treatment outcomes, and overall survival across different cancer types. This chapter specifically examines the impact of exercise on gynecological cancers.

CANCER AND EXERCISE

Exercise is known to induce systemic changes in overall health by modulating glucose metabolism, circulating insulin levels, mitochondrial biogenesis, angiogenic pathways, and cytokine secretion (1). Long-term exercise interventions throughout life have been shown to increase the levels of antioxidant enzymes and non-enzymatic repair mechanisms, thereby reducing oxidative stress and lowering the risk of cancer development (2). The systemic changes triggered by exercise also influence growing tumor tissue, potentially affecting the tumor microenvironment and therapeutic response (1). Exercise impacts tumor progression through modulation of immune function, promoting an anti-tumor macrophage profile and stimulating the mobilization and activation of natural killer cells, thereby priming the immune system for tumor surveillance and inhibition (3).

Numerous studies have demonstrated that, regardless of the exercise modality—whether aerobic, resistance training, or a combination of both—exercise enhances muscle mass and strength, improves mobility, and effectively

¹ Op. Dr., Acıbadem Eskişehir Hospital, drsevgiselen@gmail.com, ORCID iD: 0000-0002-4582-5351

VULVAR AND VAGINAL CANCERS AND EXERCISE

Vulvar and vaginal cancers are relatively rare in women. Risk factors include age, prevalence of HPV infection, smoking, HIV infection, and the presence of vulvar or vaginal intraepithelial neoplasia (29, 30). Studies specifically investigating the effects of exercise on vulvar and vaginal cancers are limited. However, considering the mechanisms of cancer development and the systemic effects on the body, long-term exercise interventions are expected to yield beneficial outcomes.

CONCLUSION

Research indicates that physical activity may help prevent cancer development and contribute to psychosocial recovery during and after cancer treatment. Although studies specifically addressing exercise in gynecological cancers are limited, the existing literature suggests that both aerobic and resistance training can provide support for these patients. Nevertheless, there is a need for comprehensive studies to more thoroughly evaluate the efficacy and safety of different types of exercise interventions.

REFERENCES

1. Ashcraft KA, Warner AB, Jones LW, et al. Exercise as Adjunct Therapy in Cancer. *Seminars in Radiation Oncology*. 2019 Jan; 29(1):16-24. doi: 10.1016/j.semradonc.2018.10.001.
2. Pingitore A, Lima GP, Mastorci F, et al. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. *Nutrition*. 2015 Jul-Aug;31(7-8):916-22. doi: 10.1016/j.nut.2015.02.005.
3. Wang Y, Malek M. Molecular, cellular, biochemical, and rehabilitative insights into exercise interventions for gynecological cancer prevention and survivorship: a narrative review. *Journal of Ovarian Research*. 2025 Jul 5;18(1):147. doi: 10.1186/s13048-025-01725-z
4. Gultekin M, Kucukyildiz I, Karaca MZ, et al. Trends of Gynecological Cancers in Turkey: Toward Europe or Asia? *International Journal of Gynecological Cancer*. 2017 Oct;27(8S Suppl 1):S1-S9. doi: 10.1097/IGC.0000000000001026.
5. Leitao MM Jr, Kehoe S, Barakat RR, et al. Comparison of D&C and office endometrial biopsy accuracy in patients with FIGO grade 1 endometrial adenocarcinoma. *Gynecologic Oncology*. 2009 Apr;113(1):105-8. doi: 10.1016/j.ygyno.2008.12.017. Epub 2009 Jan 23.
6. Grady D, Gebretsadik T, Kerlikowske K, et al. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. *Obstetrics & Gynecology*. 1995 Feb;85(2):304-13. doi: 10.1016/0029-7844(94)00383-O.
7. Voskuil DW, Monninkhof EM, Elias SG, et al. Task Force Physical Activity and Cancer. Physical activity and endometrial cancer risk, a systematic review of current evidence. *Cancer Epidemiology, Biomarkers & Prevention*. 2007 Apr;16(4):639-48. doi: 10.1158/1055-9965.EPI-06-0742.
8. Mu N, Zhu Y, Wang Y, et al. Insulin resistance: a significant risk factor of endometrial cancer. *Gynecologic Oncology*. 2012 Jun;125(3):751-7. doi: 10.1016/j.ygyno.2012.03.032.
9. Cao M, Huang Y, Zhou Y, et al. Association between physical activity and gynecological cancers: a meta-analysis of prospective cohort studies. *BMC Womens Health*. 2025 Jul 3;25(1):300. doi: 10.1186/s12905-025-03848-3.

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

10. Friedenreich CM, Cook LS, Wang Q, et al. Prospective Cohort Study of Pre- and Postdiagnosis Physical Activity and Endometrial Cancer Survival. *Journal of Clinical Oncology*. 2020 Dec 1;38(34):4107-4117. doi: 10.1200/JCO.20.01336. Epub 2020 Oct 7. Erratum in: *J Clin Oncol*. 2021 Nov 10;39(32):3650. doi: 10.1200/JCO.21.02346.
11. Smits A, Lopes A, Das N, et al. The effect of lifestyle interventions on the quality of life of gynaecological cancer survivors: A systematic review and meta-analysis. *Gynecologic Oncology*. 2015 Dec;139(3):546-52. doi: 10.1016/j.ygyno.2015.10.002.
12. Yang X, Wang J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. *Frontiers in Oncology*. 2019 Aug 8;9:744. doi: 10.3389/fonc.2019.00744.
13. Armbruster SD, Song J, Bradford A, et al. Sexual health of endometrial cancer survivors before and after a physical activity intervention: A retrospective cohort analysis. *Gynecologic Oncology*. 2016 Dec;143(3):589-595. doi: 10.1016/j.ygyno.2016.09.016.
14. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *A Cancer Journal for Clinicians*. 2021 May;71(3):209-249. doi: 10.3322/caac.21660.
15. Zhang S, Xu H, Zhang L, et al. Epidemiology, risk factors and screening. *Chinese Journal of Cancer Research*. 2020 Dec 31;32(6):720-728. doi: 10.21147/j.issn.1000-9604.2020.06.05.
16. Mustafa WA, Ismail S, Mokhtar FS, et al. Cervical Cancer Detection Techniques: A Chronological Review. *Diagnostics (Basel)*. 2023 May 17;13(10):1763. doi: 10.3390/diagnostics13101763.
17. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. *Nature Reviews Clinical Oncology*. 2024 May;21(5):389-400. doi: 10.1038/s41571-024-00881-3.
18. Sadri Nahand J, Moghooefi M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. *International Journal of Cancer*. 2020 Jan 15;146(2):305-320. doi: 10.1002/ijc.32688.
19. Krüger K, Mooren FC, Pilat C. The Immunomodulatory Effects of Physical Activity. *Current Pharmaceutical Design*. 2016;22(24):3730-48. doi: 10.2174/138161282266160322145107.
20. Miguel TP, Laurienzo CE, Faria EF, et al. Chemoradiation for cervical cancer treatment portends high risk of pelvic floor dysfunction. *Public Library of Science One*. 2020 Jun 12;15(6):e0234389. doi: 10.1371/journal.pone.0234389.
21. Zhang J, Zhang Y, Liu J, et al. The Impact of Early Postoperative Pelvic Floor Muscle Exercise on Urinary Retention and Urodynamics after Radical Hysterectomy for Cervical Cancer. *Archivos Españoles de Urología*. 2025 Jun 78(5):579-587. doi: 10.56434/j.arch.esp.urol.20257805.78.
22. Saed GM, Diamond MP, Fletcher NM. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. *Gynecologic Oncology*. 2017 Jun;145(3):595-602. doi: 10.1016/j.ygyno.2017.02.033.
23. Polen-De C, Fadadu P, Weaver AL, et al. Quality is more important than quantity: pre-operative sarcopenia is associated with poor survival in advanced ovarian cancer. *International Journal of Gynecological Cancer*. 2022 Oct 3;32(10):1289-1296. doi: 10.1136/ijgc-2022-003387.
24. Yang L, Xie HJ, Li YY, et al. Molecular mechanisms of platinumbased chemotherapy resistance in ovarian cancer (Review). *Oncology Reports*. 2022 Apr;47(4):82. doi: 10.3892/or.2022.8293.
25. Yang L, Morielli AR, Heer E, et al. Effects of Exercise on Cancer Treatment Efficacy: A Systematic Review of Preclinical and Clinical Studies. *Cancer Research*. 2021 Oct 1;81(19):4889-4895. doi: 10.1158/0008-5472.CAN-21-1258.
26. Cao A, Cartmel B, Li FY, et al. Effect of exercise on body composition among women with ovarian cancer. *Journal of Cancer Survivorship*. 2023 Oct;17(5):1386-1396. doi: 10.1007/s11764-022-01207-x.
27. Schofield C, Mol M, Taaffe DR, et al. Resistance exercise dose effects on muscle morphology, muscle function and quality of life in advanced-stage ovarian cancer survivors. *Support Care Cancer*. 2025 Apr 10;33(5):367. doi: 10.1007/s00520-025-09401-0.

Gynecological Cancers and Exercise

28. Schofield C, Newton RU, Taaffe DR, et al. Supervised resistance exercise for women with ovarian cancer who have completed first-line treatment: a pragmatic study. *Support Care Cancer*. 2023 Apr 26;31(5):304. doi: 10.1007/s00520-023-07754-y.
29. Jhingran A. Updates in the treatment of vaginal cancer. *International Journal of Gynecological Cancer*. 2022 Mar;32(3):344-351. doi: 10.1136/ijgc-2021-002517.
30. Oonk MHM, Planchamp F, Baldwin P, et al. European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer - Update 2023. *International Journal of Gynecological Cancer*. 2023 Jul 3;33(7):1023-1043. doi: 10.1136/ijgc-2023-004486.

Chapter 15

NUTRITION AND DIET IN GYNECOLOGICAL ONCOLOGY PATIENT

Nihan Erdoğan ATALAY¹

INTRODUCTION

Gynecological cancers are malignant tumors originating from female reproductive organs such as the endometrium, cervix, ovary, vagina, and vulva. They represent significant causes of morbidity and mortality among women worldwide. According to the 2020 Global Cancer Statistics published by the International Agency for Research on Cancer (IARC) under the World Health Organization (WHO), approximately 604,000 new cases of cervical cancer were reported globally, with about 342,000 deaths [1]. Gynecological cancers account for roughly 15% of all cancers in women worldwide. Among gynecological cancers, endometrial cancer is the most common, followed by ovarian and cervical cancers [1].

FEMALE PHYSIOLOGY AND NUTRITIONAL REQUIREMENTS ACROSS THE MENSTRUAL CYCLE

Female physiology is metabolically dynamic, characterized by fluctuating hormonal profiles throughout the menstrual cycle. Hormonal fluctuations in estrogen, progesterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) directly influence energy balance, nutrient metabolism, and appetite, resulting in phase-specific nutritional needs [2]. Estrogen enhances insulin sensitivity and supports glucose metabolism, while progesterone elevates basal metabolic rate, thereby increasing energy expenditure [3]. These hormonal changes generate distinct metabolic profiles during different phases of the cycle. For instance, carbohydrate metabolism predominates in the follicular phase, whereas in the luteal phase, progesterone causes a 5–10% increase in energy demand [4]. Consequently, tailoring nutritional plans according to menstrual

¹ Bolu İzzet Baysal State Hospital, dr.nihancerdoganmail.com, ORCID iD: 0000-0002-4905-7425

Such regimens may improve insulin sensitivity but risk malnutrition and muscle wasting; therefore, routine use is not recommended outside clinical trials.

Micronutrients and Monitoring

Micronutrient assessment is essential. Deficiencies in vitamin D, folate, zinc, and selenium are common in cancer patients [46].

Laboratory-confirmed deficiencies should be corrected under physician supervision; high doses outside clinical indication can be harmful. Routine multivitamin supplementation has no proven survival benefit but may help in deficient populations [47].

Continuous monitoring of weight, body composition, serum albumin/prealbumin, and CRP provides objective indicators for nutritional adjustment. Use of validated tools such as PG-SGA ensures ongoing assessment and timely intervention.

REFERENCES

1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians*, 71(3), 209–249. <https://doi.org/10.3322/caac.21660>
2. Tao, Z., & Cheng, Z. (2023). Hormonal regulation of metabolism—recent lessons learned from insulin and estrogen. *Clinical Science (London)*, 137(6), 415–434. <https://doi.org/10.1042/CS20210519>
3. Beard, J. L. (2001). Iron biology in immune function, muscle metabolism and neuronal functioning. *The Journal of Nutrition*, 131(2 Suppl), 568S–580S. <https://doi.org/10.1093/jn/131.2.568S>
4. Devries, M. C., Hamadeh, M. J., Phillips, S. M., & Tarnopolsky, M. A. (2006). Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. *American Journal of Physiology—Regulatory, Integrative and Comparative Physiology*, 291(4), R1120–R1128. <https://doi.org/10.1152/ajpregu.00700.2005>
5. Benton, M. J., Hutchins, A. M., & Dawes, J. J. (2020). Effect of menstrual cycle phase on resting metabolic rate: A systematic review and meta-analysis. *PLoS ONE*, 15(7), e0236025. <https://doi.org/10.1371/journal.pone.0236025>
6. Siminiuc, R., & Türcanu, D. (2023). Impact of nutritional diet therapy on premenstrual syndrome. *Frontiers in Nutrition*, 10, 1079417. <https://doi.org/10.3389/fnut.2023.1079417>
7. Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., & Straif, K. (2016). Body fatness and cancer—viewpoint of the IARC Working Group. *New England Journal of Medicine*, 375(8), 794–798. <https://doi.org/10.1056/NEJMsr1606602>
8. Ottery, F. D. (1996). Patient-Generated Subjective Global Assessment (PG-SGA). In P. D. McCallum & C. Polisena (Eds.), *The Clinical Guide to Oncology Nutrition* (pp. 11–23). American Dietetic Association.
9. Arends, J., Baracos, V., Bertz, H., Bozzetti, F., Calder, P. C., Deutz, N. E. P., ... Fearon, K. (2017). ESPEN expert group recommendations for action against cancer-related malnutrition. *Clinical Nutrition*, 36(5), 1187–1196. <https://doi.org/10.1016/j.clnu.2017.06.017>

10. Chiefari, E., Arcidiacono, B., & Foti, D. (2021). Insulin resistance and cancer: In search for a causal link. *International Journal of Molecular Sciences*, 22(20), 11137. <https://doi.org/10.3390/ijms222011137>
11. Garland, C. F., Gorham, E. D., Mohr, S. B., Grant, W. B., Giovannucci, E. L., Lipkin, M., ... Garland, F. C. (2007). Vitamin D and prevention of breast cancer: Pooled analysis. *Journal of Steroid Biochemistry and Molecular Biology*, 103(3–5), 708–711. <https://doi.org/10.1016/j.jsbmb.2006.12.031>
12. Rose, D. P., & Connolly, J. M. (1990). Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. *Cancer Research*, 50(22), 7139–7144. PMID: 2224849
13. Kotsopoulos, J., & Narod, S. A. (2005). Towards a dietary prevention of hereditary breast cancer. *Cancer Causes & Control*, 16(2), 125–138. <https://doi.org/10.1007/s10552-004-2593-8>
14. Koshiyama, M. (2019). Influence of nutrition and dietary intake on gynecologic cancers. *Healthcare*, 7(3), 88. <https://doi.org/10.3390/healthcare7030088>
15. Parazzini, F., Moroni, S., Negri, E., La Vecchia, C., Dal Pino, D., & Cavalleri, E. (1995). Selected food intake and risk of vulvar cancer. *Cancer*, 76(11), 2291–2296. [https://doi.org/10.1002/1097-0142\(19951201\)76:11<2291::AID-CNCR2820761117>3.0.CO;2-W](https://doi.org/10.1002/1097-0142(19951201)76:11<2291::AID-CNCR2820761117>3.0.CO;2-W)
16. Calle, E. E., & Kaaks, R. (2004). Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. *Nature Reviews Cancer*, 4(8), 579–591. <https://doi.org/10.1038/nrc1408>
17. Gallagher, E. J., & LeRoith, D. (2010). The proliferating role of insulin and insulin-like growth factors in cancer. *Trends in Endocrinology & Metabolism*, 21(10), 610–618. <https://doi.org/10.1016/j.tem.2010.07.002>
18. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. *Science Advances*, 2(5), e1600200. <https://doi.org/10.1126/sciadv.1600200>
19. Wang, B., Pei, J., Xu, S., Liu, J., & Yu, J. (2024). A glutamine tug-of-war between cancer and immune cells: Recent advances in unraveling the ongoing battle. *Journal of Experimental & Clinical Cancer Research*, 43(1), 74. <https://doi.org/10.1186/s13046-024-02994-0>
20. Ruban, M., Pozhidaeva, E., & Dergunova, L. (2025). The role of diet and nutrition in cancer development and management. *Foods*, 14(10), 1788. <https://doi.org/10.3390/foods14101788>
21. Schwingshackl, L., Morze, J., & Hoffmann, G. (2017). Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. *Nutrients*, 9(10), 1063. <https://doi.org/10.3390/nu9101063>
22. Merra, G., Noce, A., Marrone, G., Cintoni, M., Tarsitano, M. G., Capacci, A., & De Lorenzo, A. (2020). Influence of Mediterranean diet on human gut microbiota. *Nutrients*, 13(1), 7. <https://doi.org/10.3390/nu13010007>
23. Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., Ghissassi, F. E., Benbrahim-Tallaa, L., ... Straif, K. (2015). Carcinogenicity of consumption of red and processed meat. *The Lancet Oncology*, 16(16), 1599–1600. [https://doi.org/10.1016/S1470-2045\(15\)00444-1](https://doi.org/10.1016/S1470-2045(15)00444-1)
24. Barclay, A. W., Flood, V. M., Rochtchina, E., Mitchell, P., & Brand-Miller, J. C. (2008). Glycemic index, glycemic load, and chronic disease risk: A meta-analysis. *American Journal of Clinical Nutrition*, 87(3), 627–637. <https://doi.org/10.1093/ajcn/87.3.627>
25. Zhao, Q., Yu, D., Ji, X., Sun, C., & Wei, W. (2024). Dose-response association of dietary inflammatory potential with cancer outcomes: A meta-analysis of prospective cohort studies. *European Journal of Cancer Prevention*, 33(9), 367–376. <https://doi.org/10.1097/CEJ.0000000000000980>
26. Shivappa, N., Hébert, J. R., & Laviano, A. (2023). Dietary inflammatory index and cancer risk: Updated evidence and future perspectives. *Nutrition Reviews*, 81(4), ePub ahead of print. <https://doi.org/10.1093/nutrit/nuad014>
27. Mazidi, M., Gholami, S., & Kheirouri, S. (2024). Dietary inflammatory index and risk of ovarian and endometrial cancer: A systematic review and meta-analysis. *European Journal of Clinical Nutrition*, 78(5), 789–798. <https://doi.org/10.1038/s41430-024-01234-5>

Nutrition And Diet in Gynecological Oncology Patient

28. Zhang, L., Dong, J., Qi, Z., Zhao, X., & Zheng, X. (2023). Vitamin D in cancer prevention and treatment: A comprehensive review of current evidence. *Cancers (Basel)*, 15(18), 3211. <https://doi.org/10.3390/cancers15183211>
29. Sui, J., Liu, X., & Chen, Y. (2024). Dietary carotenoids and their multifaceted roles in cancer risk: An umbrella review and meta-analysis. *Foods*, 13(9), 1321. <https://doi.org/10.3390/foods13091321>
30. Pietta, P. G. (2000). Flavonoids as antioxidants. *Journal of Natural Products*, 63(7), 1035–1042. <https://doi.org/10.1021/np9904509>
31. Gupta, S. C., Patchva, S., Koh, W., & Aggarwal, B. B. (2013). Multitargeting by curcumin as revealed by molecular interaction studies. *Natural Product Reports*, 30(3), 432–454. <https://doi.org/10.1039/c3np00051a>
32. Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: Health benefits throughout life. *Advances in Nutrition*, 3(1), 1–7. <https://doi.org/10.3945/an.111.000893>
33. Ljungqvist, O., Scott, M., & Fearon, K. C. H. (2017). Enhanced recovery after surgery: A review. *JAMA Surgery*, 152(3), 292–298. <https://doi.org/10.1001/jamasurg.2016.4952>
34. Braga, M., Wischmeyer, P. E., & Drover, J. W. (2013). Immunonutrition in surgical cancer patients. *Current Opinion in Clinical Nutrition & Metabolic Care*, 16(6), 650–657. <https://doi.org/10.1097/MCO.0000000000000025>
35. Weimann, A., Braga, M., Carli, F., Higashiguchi, T., Hübner, M., Klek, S., ... Singer, P. (2021). ESPEN practical guideline: Clinical nutrition in surgery. *Clinical Nutrition*, 40(7), 4745–4761. <https://doi.org/10.1016/j.clnu.2021.03.031>
36. Hoddy, P., Mills, C. E., Chowdhury, S., & Eales, J. (2022). Effects of preoperative carbohydrate loading on recovery after elective surgery: A systematic review and network meta-analysis. *Frontiers in Nutrition*, 9, 951676. <https://doi.org/10.3389/fnut.2022.951676>
37. Ilicak, H., Duran, A., Şahin, M., & Aksoy, E. (2019). A randomized controlled study of pre-operative oral carbohydrate loading in colorectal surgery. *International Journal of Colorectal Disease*, 34(11), 1973–1981. <https://doi.org/10.1007/s00384-019-03349-4>
38. Bisch, S., Nelson, G., & Altman, A. (2019). Impact of nutrition on enhanced recovery after surgery (ERAS) in gynecologic oncology. *Nutrients*, 11(5), 1088. <https://doi.org/10.3390/nu11051088>
39. Charoenkwan, K., Nantasupha, C., Muangmool, T., & Matovinovic, E. (2024). Early versus delayed oral feeding after major gynaecologic surgery. *Cochrane Database of Systematic Reviews*, 2024(2), CD004508. <https://doi.org/10.1002/14651858.CD004508.pub5>
40. Arends, J., Bachmann, P., Baracos, V., Barthelemy, N., Bertz, H., Bozzetti, F., ... Preiser, J. C. (2017). ESPEN guidelines on nutrition in cancer patients. *Clinical Nutrition*, 36(1), 11–48. <https://doi.org/10.1016/j.clnu.2016.07.015>
41. Andreyev, H. J. N., Norman, A. R., Oates, J., & Cunningham, D. (2019). Nutrition in pelvic radiotherapy patients: A review. *Radiotherapy and Oncology*, 140, 8–17. <https://doi.org/10.1016/j.radonc.2019.06.017>
42. Figueiredo, J. C., Hayashi, S., & Saltzman, J. R. (2020). Nutritional considerations in immunotherapy and targeted cancer treatments. *Journal of Oncology Practice*, 16(6), 365–373. <https://doi.org/10.1200/JOP.19.00594>
43. Braga, M., Gianotti, L., Vignali, A., Cestari, A., Bisagni, P., & Di Carlo, V. (1999). Perioperative immunonutrition in patients undergoing cancer surgery: Results of a randomized double-blind phase 3 trial. *Archives of Surgery*, 134(4), 428–433. <https://doi.org/10.1001/archsurg.134.4.428>
44. Ochoa, J. B., Duggan, C., & Griffith, D. P. (2021). Immunonutrition controversies in critical care. *JPEN: Journal of Parenteral and Enteral Nutrition*, 45(Suppl 1), S33–S43. <https://doi.org/10.1002/jpen.2049>
45. Champ, C. E., Klement, R. J., & Vernieri, C. (2023). Ketogenic diet and fasting in oncology. *Journal of Clinical Medicine*, 12(3), 987. <https://doi.org/10.3390/jcm12030987>

MULTIDISCIPLINARY APPROACHES IN GYNECOLOGICAL ONCOLOGY

46. Chlebowski, R. T., Johnson, K. C., Kooperberg, C., Pettinger, M., Wactawski-Wende, J., Rohan, T., ... Prentice, R. (2014). Vitamin D status and cancer outcomes. *Journal of Clinical Oncology*, 32(28), 3115–3124. <https://doi.org/10.1200/JCO.2013.54.5943>
47. Peake, J. M., Della Gatta, P. A., & Suzuki, K. (2020). Micronutrients and cancer therapy. *Nutrients*, 12(6), 1756. <https://doi.org/10.3390/nu12061756>

Chapter 16

SEXUAL LIFE IN GYNECOLOGICAL CANCER PATIENTS

Asuman DOĞAN BAYRAK¹

INTRODUCTION

Gynecological malignancies are cancers that affect the female reproductive organs, including the vulva, vagina, cervix, endometrium, fallopian tubes, and ovaries (1). Among the top 10 most common cancers in the female population worldwide, three are gynecological cancers: cervical cancer ranks 4th with a frequency of 6.9%, endometrial cancer ranks 6th with 4.8%, and ovarian cancer ranks 8th with 3.6% (2). Every year, 1.3 million women are diagnosed with gynecological cancer, and more than 450,000 women die from it annually (3).

Gynecological cancers can cause mood disorders such as depression, loneliness, and anger, and may also affect sexual desire and function. On the physical side, they can lead to genitourinary symptoms and bodily changes. The combination of these factors can lead to sexual dysfunction. Sexual dysfunction following a cancer diagnosis is characterized by reduced desire or interest, dyspareunia, and difficulties or inability to orgasm. The frequency of sexual dysfunction among these patients ranges from 30% to 100% (4). Additionally, medications commonly used to treat mood disorders can negatively affect sexual function, leading to decreased libido or orgasm inhibition (5).

Treatment for gynecological cancers involves a variety of approaches, including surgery, neoadjuvant or adjuvant chemotherapy, brachytherapy, radiotherapy, and multimodal therapies (5). These treatments, in addition to their effects on the body, can also lead to various physical, psychological, and sexual consequences (6).

These treatments may result in chronic morbidities, such as vulvovaginal atrophy (VVA) and lymphedema, which can negatively affect body image, sexual desire, arousal, orgasm function, dyspareunia, and communication with partners

¹ Isparta Şehit Yunus Emre State Hospital, asumand96@gmail.com, ORCID iD: 0009-0008-2552-4499

REFERENCES

- Northwestern Medicine. Gynecologic Cancer [Internet]. [cited 2025 Jul 27].
- World Cancer Research Fund. Worldwide cancer data [Internet]. [cited 2025 Jul 27].
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2023. *CA Cancer J Clin.* 2023;73(1):17–48.
- Brotto LA, Yule M, Breckon E. Psychological interventions for the sexual sequelae of cancer: a review of the literature. *J Cancer Surviv.* 2010;4(4):346–60.
- Cancer.net. Addressing common sexual health concerns during cancer survivorship [Internet]. [cited 2025 Jul 25].
- Centers for Disease Control and Prevention. Gynecologic Cancers [Internet]. 2017 [cited 2025 Jul 25].
- Abbott-Anderson K, Kwekkeboom KL. A systematic review of sexual concerns reported by gynecological cancer survivors. *Gynecol Oncol.* 2012;124(3):477–89.
- Smith T, Kingsberg SA, Faubion S. Sexual dysfunction in female cancer survivors: Addressing the problems and the remedies. *Maturitas.* 2022;165:52–7.
- Guntupalli SR, Sheeder J, Ioffe Y, et al. Sexual and marital dysfunction in women with gynecologic cancer. *Int J Gynecol Cancer.* 2017;27(3):603–7.
- Lin H, Fu HC, Wu CH, et al. Evaluation of sexual dysfunction in gynecologic cancer survivors using DSM-5 diagnostic criteria. *BMC Womens Health.* 2022;22(1):1.
- Jackson KS, Naik R. Pelvic floor dysfunction and radical hysterectomy. *Int J Gynecol Cancer.* 2006;16(1):354–63.
- Serati M, Salvatore S, Uccella S, et al. Sexual function after radical hysterectomy for early-stage cervical cancer: Is there a difference between laparoscopy and laparotomy? *J Sex Med.* 2009;6:2516–22.
- Corrêa CSL, Leite ICG, Andrade APS, et al. Sexual function of women surviving cervical cancer. *Arch Gynecol Obstet.* 2015;293:1053–63.
- Domenici L, Palaia I, Giorgini M, et al. Sexual health and quality of life assessment among ovarian cancer patients during chemotherapy. *Oncology.* 2016;91(4):205–10.
- Vaz AF, Pinto-Neto AM, Conde DM, et al. Quality of life and menopausal and sexual symptoms in gynecologic cancer survivors: a cohort study. *Menopause.* 2011;18(6):662–9.
- World Health Organization. Sexual health [Internet]. [cited 2025 Jul 28].
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington (VA): American Psychiatric Publishing; 2013.
- Del Pup L, Villa P, Amar ID, et al. Approach to sexual dysfunction in women with cancer. *Int J Gynecol Cancer.* 2019;29(3):630–4.
- Cardoso F, Loibl S, Pagani O. The European Society of Breast Cancer specialists recommendations for the management of young women with breast cancer. *Eur J Cancer.* 2012;48:3355–77.
- Luo F, Link M, Grabenhorst C, et al. Low sexual desire in breast cancer survivors and patients: A review. *Sex Med Rev.* 2022;10:367–75.
- Kingsberg SA, Althof S, Simon JA, et al. Female sexual dysfunction—Medical and psychological treatments. *J Sex Med.* 2017;14:1463–91.
- Mac Bride MB, Rhodes DJ, Shuster LT. Vulvovaginal atrophy. *Mayo Clin Proc.* 2010;85:87–94.
- Barcellini A, Dominoni M, Dal Mas F, et al. Sexual health dysfunction after radiotherapy for gynecological cancer: Role of physical rehabilitation including pelvic floor muscle training. *Front Med (Lausanne).* 2021;8:813352.
- Nappi RE, Palacios S. Impact of vulvovaginal atrophy on sexual health and quality of life at postmenopause. *Climacteric.* 2014;17:3–9.
- Sousa MS, Peate M, Jarvis S. A clinical guide to the management of genitourinary symptoms in breast cancer survivors on endocrine therapy. *Ther Adv Med Oncol.* 2017;9:269–85.
- Candy B, Jones L, Vickerstaff V, et al. Interventions for sexual dysfunction following treatments for cancer in women. *Cochrane Database Syst Rev.* 2016;2(2):CD005540.

27. U.S. Food and Drug Administration. FDA approves new treatment for hypoactive sexual desire disorder in premenopausal women [Internet]. [cited 2025 Jul 28].
28. Edinoff AN, Sanders NM, Lewis KB, et al. Bremelanotide for treatment of female hypoactive sexual desire. *Neurol Int.* 2022;14:75–88.
29. Parish SJ, Hahn SR. Hypoactive sexual desire disorder: A review of epidemiology, biopsychology, diagnosis, and treatment. *Sex Med Rev.* 2016;4(2):103–20.
30. Dhillon S, Keam SJ. Bremelanotide: First approval. *Drugs.* 2019;79(14):1599–606.
31. Palacios S, Mejía A, Neyro JL. Treatment of the genitourinary syndrome of menopause. *Climacteric.* 2015;18(Suppl 1):23–9.
32. Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic acid in the third millennium. *Polymers (Basel).* 2018;10:701.
33. Harten IA, Evanko SP, Choe CH, et al. The extracellular matrix molecules versican and hyaluronan in urethral and vaginal tissues in stress urinary incontinence. *Neurourol Urodyn.* 2021;40:771–82.
34. Faubion SS, Larkin LC, Stuenkel CA, et al. Management of genitourinary syndrome of menopause in women with or at high risk for breast cancer. *Menopause.* 2018;25:596–608.
35. Suckling J, Lethaby A, Kennedy R. Local oestrogen for vaginal atrophy in postmenopausal women. *Cochrane Database Syst Rev.* 2006;(4):CD001500.
36. Del Pup L, Postruznik D, Corona G. Effect of one-month treatment with vaginal promestriene on serum estrone sulfate levels in cancer patients: a pilot study. *Maturitas.* 2012;72(1):93–4.
37. Nappi RE, Murina F, Perrone G, et al. Clinical profile of women with vulvar and vaginal atrophy who are not candidates for local vaginal estrogen therapy. *Minerva Ginecol.* 2017;69(4):370–80.
38. Archer DF, Goldstein SR, Simon JA, et al. Efficacy and safety of ospemifene in postmenopausal women with moderate-to-severe vaginal dryness: a phase 3, randomized, double-blind, placebo-controlled, multicenter trial. *Menopause.* 2019;26:611–21.
39. Del Pup L. Ospemifene: a safe treatment of vaginal atrophy. *Eur Rev Med Pharmacol Sci.* 2016;20(18):3934–44.
40. De Rosa N, Lavitola G, Giampaolino P, et al. Impact of ospemifene on quality of life and sexual function in young survivors of cervical cancer: A prospective study. *Biomed Res Int.* 2017;2017:7513610.
41. Goetsch MF, Lim JY, Caughey AB. A practical solution for dyspareunia in breast cancer survivors: a randomized controlled trial. *J Clin Oncol.* 2015;33(30):3394–400.

Chapter 17

BONE HEALTH IN GYNECOLOGIC ONCOLOGY PATIENTS

Bedirhan ALBAYRAK¹

INTRODUCTION

Osteoporosis is the most common metabolic bone disease, characterized by decreased bone mineral density and deterioration of bone microarchitecture, and is associated with an increased risk of fractures. Fractures resulting from osteoporosis significantly increase morbidity and mortality in the elderly population and impose a substantial economic burden on healthcare systems. Type 1 osteoporosis, which develops due to decreased estrogen levels in the postmenopausal period, and Type 2 osteoporosis, which occurs in the senile period, are considered primary causes of osteoporosis. In contrast, secondary osteoporosis develops as a consequence of underlying metabolic, endocrinologic, or oncologic conditions that affect bone metabolism. Therefore, in cancer patients, who are often in the elderly age group, multiple factors contribute to the deterioration of bone microarchitecture.

In the United States, approximately 750,000 new cases of osteoporosis are diagnosed annually, with an estimated annual economic cost ranging between 10 and 17 billion dollars [1]. One comprehensive study on osteoporosis in Turkey is the FRACTURK study, which included 2,000 participants. It demonstrated that among individuals aged 50 years and older, osteoporosis was present in 7.5% of men and 33.3% of women [2]. The risk of hip fracture due to osteoporosis has been reported by the World Health Organization (WHO) as 46.6 per 1,000 annually. However, in these patients, not only hip fractures but also vertebral compression fractures and wrist fractures are observed, which further increase the overall fracture incidence.

¹ Samsun Training and Research Hospital, bedirhanalbayrak.5595@gmail.com,
ORCID iD: 0000-0003-0420-226X

lumbar spine, or one-third radius. In patients with osteopenia, medical therapy is recommended if FRAX evaluation shows a hip fracture risk above 3% or a significant osteoporotic fracture risk above 20%.

For patients with these risk factors, vitamin D and calcium supplementation and bisphosphonate or denosumab therapy may be considered. In appropriate cases, estrogen replacement therapy may be recommended to prevent postmenopausal bone loss in patients with iatrogenic early menopause. However, in women with a history of hormone receptor-positive gynecological tumors, this approach remains controversial due to concerns regarding an increased risk of disease recurrence.

REFERENCES

1. Fogel, H.A.; Jenis, L.G. The economic burden of osteoporosis. In *Vertebral Compression Fractures in Osteoporotic and Pathologic Bone: A Clinical Guide to Diagnosis and Management*; Springer: 2020; pp. 21-29.
2. Tuzun, S.; Eskiyurt, N.; Akarirmak, U.; Saridogan, M.; Senocak, M.; Johansson, H.; Kanis, J.A.; Society, T.O. Incidence of hip fracture and prevalence of osteoporosis in Turkey: the FRAC-TURK study. *Osteoporosis international* **2012**, *23*, 949-955.
3. Hung, Y.-C.; Yeh, L.-S.; Chang, W.-C.; Lin, C.-C.; Kao, C.-H. Prospective study of decreased bone mineral density in patients with cervical cancer without bone metastases: a preliminary report. *Japanese journal of clinical oncology* **2002**, *32*, 422-424.
4. Lee, Y.; Kim, A.; Kim, H.Y.; Eo, W.K.; Lee, E.S.; Chun, S. Bone density in patients with cervical cancer or endometrial cancer in comparison with healthy control; according to the stages. *Journal of Cancer* **2015**, *6*, 686.
5. Lee, J.E.; Park, C.Y.; Lee, E.; Ji, Y.I. Effect of gynecological cancer and its treatment on bone mineral density and the risk of osteoporosis and osteoporotic fracture. *Obstetrics & gynecology science* **2020**, *63*, 470-479.
6. Michaud, L.B.; Goodin, S. Cancer-treatment-induced bone loss, part 1. *American journal of health-system pharmacy* **2006**, *63*, 419-430.
7. Syed, F.; Khosla, S. Mechanisms of sex steroid effects on bone. *Biochemical and biophysical research communications* **2005**, *328*, 688-696.
8. Garcia, C.; Lyon, L.; Conell, C.; Littell, R.D.; Powell, C.B. Osteoporosis risk and management in BRCA1 and BRCA2 carriers who undergo risk-reducing salpingo-oophorectomy. *Gynecologic oncology* **2015**, *138*, 723-726.
9. Hibler, E.A.; Kauderer, J.; Greene, M.H.; Rodriguez, G.C.; Alberts, D.S. Bone loss after oophorectomy among high-risk women: an NRG oncology/gynecologic oncology group study. *Menopause* **2016**, *23*, 1228-1232.
10. Hui, S.K.; Khalil, A.; Zhang, Y.; Coghill, K.; Le, C.; Dusenberry, K.; Froelich, J.; Yee, D.; Downs, L. Longitudinal assessment of bone loss from diagnostic computed tomography scans in gynecologic cancer patients treated with chemotherapy and radiation. *American journal of obstetrics and gynecology* **2010**, *203*, 353. e351-353. e357.
11. Stavraka, C.; Maclaran, K.; Gabra, H.; Agarwal, R.; Ghaem Maghami, S.; Taylor, A.; Dhillon, W.S.; Panay, N.; Blagden, S.P. A study to evaluate the cause of bone demineralization in gynecological cancer survivors. *The oncologist* **2013**, *18*, 423-429.
12. Salcedo, M.P.; Sood, A.K.; Jhingran, A.; Eifel, P.J.; Klopp, A.H.; Iyer, R.B.; Fellman, B.M.; Jimenez, C.; Schmeler, K.M. Pelvic fractures and changes in bone mineral density after radiotherapy

Bone Health in Gynecologic Oncology Patients

for cervical, endometrial, and vaginal cancer: a prospective study of 239 women. *Cancer* **2020**, *126*, 2607-2613.

13. Sobecki, J.N.; Rice, L.W.; Hartenbach, E.M. Bone health and osteoporosis screening in gynecologic cancer survivors. *Gynecologic Oncology* **2021**, *160*, 619-624.