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CHAPTER 1

APOPTOSIS: MECHANISMS, REGULATION, 
AND BIOLOGICAL SIGNIFICANCE

Yalda HEKMATSHOAR 1 

Aynur KARADAĞ GÜREL 2

INTRODUCTION

The survival and proper functioning of multicellular organisms rely on the tight-
ly controlled process of cell death. This regulation maintains tissue balance by 
coordinating the creation of new cells with the removal of old or damaged ones. 
Cell death is essential for regular tissue renewal, defense against infections, and 
developmental processes like embryogenesis and metamorphosis. The two ma-
jor forms of cell death are programmed cell death (apoptosis) and necrosis (1).

Apoptosis is a strictly regulated, evolutionarily conserved process that allows 
cells to self-eliminate in a methodical manner without causing inflammation 
or damaging neighboring cells (2). Unlike necrosis, which is uncontrollable 
and often accompanied by swelling and membrane rupture, apoptosis involves 
the deliberate breakdown of cellular components (2). Tissue homeostasis, 
development, and defense against damaged or potentially cancerous cells all 
depend on it (1). In 1972, Kerr and associates provided a clear description of 
apoptosis, defining its morphological characteristics and differentiating it from 
necrosis (3).

1	 Ass. Prof., Altınbaş University, Department of Medical Biology, yalda.hekmatshaor@altinbas.edu.tr, 
ORCID iD: 0000-0003-4683-074X

2	 Assoc. Prof., University of Health Sciences, Gülhane Faculty of Medicine, Department of Medical Biology, 
aynur.karadag@sbu.edu.tr, ORCID iD: 0009-0000 1574-5329
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CHAPTER 2

NETOSIS: PROGRAMMED CELL DEATH 
MEDIATED BY EXTRACELLULAR TRAPS

Seda TAŞIR 1

INTRODUCTION

Neutrophils can neutralize pathogens not only through classical mechanisms 
such as phagocytosis and degranulation, but also via DNA structures released 
into the extracellular environment. Neutrophil Extracellular Traps (NETs) are 
recognized as one of the rapid and effective defense mechanisms of the innate 
immune system. NETs are three-dimensional networks composed of DNA fib-
ers embedded with granule-derived antimicrobial proteins, histones, and proin-
flammatory damage-associated molecular pattern (DAMP) molecules. This or-
ganization plays a critical role in both pathogen capture and the orchestration of 
immune responses. Although NET formation was initially thought to be exclu-
sively dependent on cell death, current evidence indicates that different signaling 
pathways can mediate NET release while preserving cell viability. Consequently, 
NETosis can be classified into multiple subtypes depending on the triggering 
factors, molecular processes, and cellular outcomes. Moreover, various disease 
conditions can significantly shape the protein composition of NETs.

NEUTROPHIL DEFENSE STRATEGIES AND NETOSIS DEVELOPMENT

Neutrophils are the most abundant and rapid effector cells of the innate immune 
system, playing a central role in protecting hosts against pathogens (1). Despite 
their short lifespan, neutrophils constitute approximately 50–70% of all circulat-
ing leukocytes in humans. They originate from hematopoietic stem cells in the 

1	 PhD, Ankara University Biotechnology Institute, sdyilmaz@ankara.edu.tr,  
ORCID iD: 0000-0001-8879-0016
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CONCLUSION

Although neutrophil extracellular traps (NETs) are one of the immune system’s 
powerful defense mechanisms against infections, uncontrolled or excessive NET 
formation can play a harmful role in numerous pathophysiological processes. 
The literature indicates that nuclear DNA decondensation, the release of granu-
lar and cytoplasmic proteins into the extracellular space, ROS production, and 
the presence of various stimuli are key determinants in NET formation. The ac-
tivation of lytic and non-lytic NETosis pathways by different triggers indicates 
that the process is regulated by a context-dependent, complex network. Current 
findings demonstrate that NETs are not only crucial for infection control but 
also serve as key regulators in a wide range of pathological conditions, including 
autoinflammatory diseases, thrombosis, and malignancies. Therefore, under-
standing the molecular dynamics of NET formation and developing therapeutic 
strategies targeting NET components hold the potential to open new treatment 
avenues across a wide range of diseases.
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CHAPTER 3

PYROPTOSIS: CELLULAR SIGNALING OF 
INFLAMMATORY CELL DEATH

Gökhan GÖRGİŞEN 1 

Fulya YAYLACIOĞLU TUNCAY 2

PYROPTOSIS: AN INTRODUCTION AND BRIEF HISTORICAL 
OVERVIEW

In multicellular organisms, maintaining a balance between cell proliferation and 
cell death is critical for ensuring physiological homeostasis. Unlike accidental 
cell death, numerous distinct forms of programmed cell death (PCD) have now 
been identified in cells (1).

Pyroptosis is an immunogenic form of PCD, characterized by unique cell 
swelling, osmotic lysis, and plasma membrane rupture. This process results in 
the release of pro-inflammatory intracellular components into the extracellular 
space, serving as a powerful alarm signal to the immune system (2). The idea of 
pyroptosis began in the 1990s with observations like the death of macrophages 
infected with Shigella flexneri (2). However, researchers clarified the concept 
around 2000 when they described a specific type of cell death in Salmonella-
infected macrophages that was morphologically different from apoptosis (3,4). In 
2001, the term “pyroptosis” was officially used to describe a Caspase-1-dependent 
process that, although it shares some features with apoptosis, is mainly driven 
by inflammatory cascades (2). An important turning point in understanding its 
mechanism came with the identification of Gasdermin D as the key executioner 
protein. The molecular basis for the observed rupture of the plasma membrane 
1	 Assoc. Prof., University of Health Sciences, Gülhane Faculty of Medicine, Department of Medical Biology,  
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inhibition prevents the release of mature IL-1β and IL-18, which are key actors in 
inflammation. This helps to decrease the detrimental consequences of pyroptosis 
in a variety of disorders (2).

Instead of directly inhibiting targets, additional therapeutic approaches focus 
on upstream factors that influence the assembly or stability of inflammasome 
components. Metformin, for example, stimulates autophagy and inhibits NLRP3-
mediated pyroptosis via activating the AMPK/mTOR pathway. Meanwhile, 
irisin and mitochondrial ubiquitin ligase activation can prevent GSDMD-
mediated pyroptosis (2). Furthermore, several nanobodies have been developed 
to selectively target the N-terminal domain of GSDMD, reducing its pore-
forming activity and thus decreasing pyroptotic cell death (46). The mentioned 
therapeutic approaches address a variety of targets, such as indirect modulation 
via pathways like AMPK/mTOR activation (2) and direct suppression of 
inflammasome components such NLRP3, GSDMD, and caspases (47).

These various strategies suggest that pyroptosis can be targeted in a variety of 
inflammatory diseases, especially those associated with an uncontrolled innate 
immune response (47). A complete understanding of these inhibitory processes 
is crucial for developing targeted therapeutics for diseases characterized by 
excessive or inappropriate pyroptotic activity, such as intervertebral disc 
degeneration (48) and malignancies (2).
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CHAPTER 4

 CUPROPTOSIS: MECHANISMS OF 
COPPER-INDUCED CELL DEATH

Aynur KARADAĞ GÜREL 1 

Fulya YAYLACIOĞLU TUNCAY 2

INTRODUCTION

Programmed cell death (PCD) processes are vital for maintaining homeostasis 
and preventing cancer. In addition to well-characterized pathways such as apop-
tosis, autophagy, and necroptosis, new metal-dependent PCDs such as ferropto-
sis have recently been discovered. In 2022, Tsvetkov and colleagues elucidated 
“cuproptosis,” a distinctive mode of cellular demise initiated by the direct inter-
action of copper (Cu) ions with lipoylated proteins within the mitochondrial 
respiratory chain. This chapter details the molecular mechanism of cuproptosis, 
its potential physiological roles in normal cells, and how it is disrupted in can-
cer cells. In particular, we highlight the differences in sensitivity of cancer cells 
with increased copper levels and mitochondrial metabolism to this pathway. We 
also talk about how targeting cuproptosis could be a new way to treat tumors 
that don’t respond to standard treatments and the new ways that tumors can 
become resistant. The integration of cuproptosis into cancer biology provides a 
new framework for therapeutic development.

Cell death biology has experienced a significant paradigm shift in recent years. 
In addition to the traditional pathways of apoptosis, necrosis, and autophagy, 
many new programmed cell death (PCD) mechanisms have been found. These 
include ferroptosis, which is caused by iron-dependent lipid peroxidation; 
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structure and metabolic pathways, impairs mitochondrial respiration, and over-
whelms detoxification systems. As oxidative stress accumulates, mitochondrial 
membrane integrity collapses, proteotoxic stress intensifies, and key metabol-
ic enzymes undergo pathological acylation and oligomerization—driving cells 
toward cuproptosis. Collectively, these findings underscore that copper is both 
vital and potentially lethal, and that the cell’s ability to precisely regulate cop-
per uptake, utilization, sequestration, and export ultimately determines whether 
copper acts as a life-sustaining cofactor or a catalyst of regulated cell death.
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CHAPTER 5

NECROPTOSIS: CONTROLLED NECROSIS AND 
INFLAMMATION

Suray PEHLIVANOGLU 1 

Sebnem PEHLIVANOGLU 2

DEFINITION AND HISTORY OF NECROPTOSIS

Necroptosis is a regulated form of cell death that exhibits the morphological 
characteristics of necrosis. It leads to cell and organelle swelling, disruption to 
the integrity of the plasma membrane and the release of intracellular contents. 
This triggers a strong inflammatory response in the microenvironment. Unlike 
apoptosis, necroptosis is a caspase-independent cell death pathway. This type of 
cell death occurs between apoptosis and accidental necrosis (1, 2). Functionally, 
it plays a crucial role in a wide range of physiological and pathological processes 
including defence against viral infections, inflammatory regulation, ischaemic 
tissue injury and tumour biology (1). The rupture of the plasma membrane dur-
ing necroptosis releases intracellular molecules act as damage-associated molec-
ular patterns (DAMPs) that activating immune responses (3).

Regulation or control of necrosis was first proposed in the early 2000s, based 
on evidence that showed tumour necrosis factor-α (TNF-α) could cause cell 
death despite the presence of pharmacological inhibitors of caspase activity 
(4, 5). This discovery undermined the long-held perspective that necrosis was 
entirely random and uncontrolled. In 2005, Degterev et al. introduced the term 
‘necroptosis’ to formally describe this regulated caspase-independent process 
(6). The prevailing view today is that necroptosis is a form of programmed 
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Necroptosis is considered a highly immunogenic form of cell death because 
the release of damage-associated molecular patterns (DAMPs) following 
membrane rupture attracts and activates dendritic cells. Activated dendritic cells 
subsequently present tumour antigens to naïve CD8⁺ T cells, promoting their 
differentiation into cytotoxic effector cells and contributing to an immunogenic 
tumour microenvironment. These findings support the hypothesis that inducing 
necroptosis in apoptosis-resistant tumour cells may be a promising therapeutic 
strategy. However, necroptosis can also promote tumour progression. DAMPs 
released from necroptotic cells may support angiogenesis, cell proliferation, 
immune evasion, and metastasis in certain cancers. Epigenetic silencing of RIPK3 
through promoter hypermethylation such as that induced by the oncometabolite 
2-hydroxyglutarate (2-HG) in IDH1-mutant tumours has been shown to 
confer resistance to necroptosis. Similarly, RIPK3 promoter hypermethylation 
may contribute to RIPK3 loss in human small cell lung cancer. In colorectal 
cancer, METTL3-mediated enhancement of TRAF5 m6A modification in 
M2-polarized tumour-associated macrophages impairs necroptosis and has 
been linked to the development of chemoresistance to oxaliplatin. The RNA-
editing enzyme ADAR1 has recently emerged as a key mediator of resistance to 
immune checkpoint blockade therapy. ADAR1 inhibits antitumour immunity 
by suppressing immunogenic double-stranded RNAs. Its depletion or mutation 
results in Z-RNA accumulation (ZBP1 activation) and subsequent RIPK3-
mediated necroptosis, restoring responsiveness to immunotherapy (57).

Despite its antitumor potential, necroptosis can also have detrimental 
effects in certain circumstances by promoting uncontrolled cell proliferation, 
inflammation, and metastasis. Therefore, depending on the tumor type and 
microenvironment, activation or inhibition of necroptosis may provide 
therapeutic benefit. In particular, inhibition of necroptotic signaling has been 
proposed as a strategy to reprogram the tumor microenvironment by enhancing 
highly immunogenic myeloid and T-cell responses (57).
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CHAPTER 6

FERROPTOSIS

Laika KARDANA 1 

Hasan Huseyin KAZAN 2

Programmed cell death (PCD) is an essential physiological process that contrib-
utes to cellular homeostasis, embryogenesis, tissue development, immune reg-
ulation and aging (1–3). Over the past decades, several types of cell death, like 
apoptosis, autophagy and pyroptosis have widely been studied for diverse phys-
iological and pathophysiological conditions (4). In addition to those cell death 
mechanisms, a type of regulated cell death has newly characterized—ferroptosis, 
which is distinct from these classical pathways.

Ferroptosis was discovered in 2003 by Dolma et al. who identified erastin, a 
compound that caused death in RAS-mutant cancer cells without showing the 
hallmark features of apoptosis or necrosis, including chromatin condensation, 
caspase activation or mitochondrial cytochrome c release (5). Later research 
showed that iron chelators could inhibit this distinct type of cell death through 
iron-dependent mechanisms (6,7). In 2012, Dixon  et al. officially introduced 
the term “ferroptosis”  to describe an iron-dependent and non-apoptotic form 
of cell death characterized by the accumulation of lipid reactive oxygen species 
(ROS). This process represents a unique type of oxidative cell death, primarily 
driven by excessive lipid peroxidation and an inadequate antioxidant capacity to 
remove lipid peroxides (7).

Ferroptosis is different from other types of cell death by specific morphological 
changes in mitochondria such as decreased or missing cristae, increased 
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such as drug specificity, off-target effects and the complex relationship between 
ferroptosis and other regulated cell death pathways must carefully be addressed. 
Even though research on ferroptosis is expanding, the majority of findings are 
mostly derived from in vitro and in vivo animal studies, with limited clinical data 
accessible.

To sum up, ferroptosis is a complicated and important biological process that 
involves metabolism, oxidative stress and cell death. Moreover, its involvement 
in the progression of various diseases represents a new approach of treatment by 
targeting its regulatory networks. Therefore, developing effective strategies could 
pave the way for innovative therapies for such as cancer, neurodegenerative 
disorders, ischemia-reperfusion and acute kidney injury.
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X, Anastasov N, Kössl J, Brandner S. GTP cyclohydrolase 1/tetrahydrobiopterin counteract 
ferroptosis through lipid remodeling. ACS central science. 2019 Dec 27;6(1):41-53.

78. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Mai-
mone TJ, Zoncu R, Bassik MC. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit 
ferroptosis. Nature. 2019 Nov 28;575(7784):688-92.

79. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da 
Silva TN, Panzilius E, Scheel CH, Mourão A. FSP1 is a glutathione-independent ferroptosis 
suppressor. Nature. 2019 Nov 28;575(7784):693-8.

80. Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 blocks ferroptosis independent 
of ubiquinol metabolism. Biochemical and biophysical research communications. 2020 Mar 
19;523(4):966-71.

81. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, 
Wolpaw AJ, Stockwell BR. Global survey of cell death mechanisms reveals metabolic regula-
tion of ferroptosis. Nature chemical biology. 2016 Jul;12(7):497-503.

82. Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant systems as modulators 
of ferroptosis: focus on transcription factors. Antioxidants. 2024 Feb 28;13(3):298.

83. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Freitas FP, 
Seibt T, Mehr L. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced 
ferroptosis. Cell. 2018 Jan 25;172(3):409-22.

84. Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and function. Lipids. 2004 
Apr;39(4):293-309.

85. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger 
SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR. Dependency of a therapy-resistant 
state of cancer cells on a lipid peroxidase pathway. Nature. 2017 Jul 27;547(7664):453-7.

86. Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis. Free Radical Biology and Medicine. 
2018 Nov 1;127:153-9.

87. Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR. Inhibition of sele-
noprotein synthesis by selenocysteine tRNA [Ser] Sec lacking isopentenyladenosine. Journal 
of Biological Chemistry. 2000 Sep 8;275(36):28110-9.

88. Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao 



109

Ferroptosis
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CHAPTER 7

AUTOPHAGY AT THE CROSSROADS OF CELL 
SURVIVAL AND CELL DEATH

Nevin BELDER1

INTRODUCTION

Autophagy broadly defines an evolutionarily conserved set of catabolic path-
ways that are critically important for sustaining cellular homeostasis. This es-
sential process culminates in the transport of intracellular cargo, including mac-
romolecules like proteins and membrane-bound organelles, to the lysosome 
for degradation and subsequent recycling. Operating at a basal level in all cell 
types, autophagy prevents the detrimental accumulation of damaged proteins 
and compromised organelles. This mechanism therefore assumes a fundamental 
role in the quality control of cytoplasmic constituents, thereby underpinning the 
maintenance of cellular equilibrium (1,2)

Life is sustained by an ongoing balance between the creation and breakdown of 
the cell’s own components, a principle that becomes clearer as our understanding 
of cellular physiology expands. Proteins, membranes and entire organelles are 
continually renewed, and this constant turnover distinguishes living cells from 
engineered systems that rely on fixed parts. To maintain this internal balance, cells 
draw steadily on nutrients and energy from their surroundings. In animals, these 
demands are met largely through the digestion of dietary proteins, which provides 
both the building blocks and the metabolic fuel required to support cellular 
renewal (3). The understanding of intracellular protein degradation mechanisms 
began with the discovery of the lysosome as a distinct cellular structure by the 
Belgian cytologist Christian de Duve in 1955 (Figure 1). De Duve was awarded 
the 1974 Nobel Prize in Physiology or Medicine for his pioneering work on this 
1	 PhD, Ankara University Biotechnology Institute, belder@ankara.edu.tr, ORCID iD: 0000-0001-9353-9387
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preserving its homeostatic roles. As mechanistic insight continues to converge 
with disease-focused research, autophagy is likely to become increasingly central 
to diagnostic, prognostic and therapeutic strategies. Its still-expanding biology 
positions autophagy as a key axis in future efforts to understand and treat human 
disease.
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CHAPTER 8

MITOPHAGY: THE PROCESS OF FINE-TUNING 
MITOCHONDRIAL AND CELLULAR HOMEOSTASIS

Ahmet Çağlar ÖZKETEN 1

INTRODUCTION

Mitochondria are double membrane-bound organelles possessing their own ge-
netic material (mtDNA) as well as ribosomes, and a cytosolic environment to 
carry out the reactions related to energy metabolism, biogenesis of certain me-
tabolites, regulation of metabolism, thermogenesis, signaling, and apoptosis. Al-
though the discovery of mitochondria dates back to the mid-1800s, their pivotal 
function in energy metabolism was demonstrated by Kennedy and Lehninger 
much later in 1950 (1, 2). Possessing all four conserved features of the living 
organisms is the core of the endosymbiotic theory, which states that an archaeon 
engulfed an α-proteobacterium, triggering a mutualistic relationship so efficient 
that they thrived together around 2 billion years ago (3). Now, we know the mi-
tochondria are not just the powerhouse of the cell, but they are essential to a 
wide variety of different functions, including metabolic processing and signal-
ing. Therefore, comprehending the mitochondrial dynamics in detail is crucial 
to establishing and maintaining cellular balance ultimately.

The eminence of the mitochondria lies in their role in cellular homeostasis. 
In order to maintain cellular homeostasis, the cell must institute mitochondrial 
homeostasis, the organelle-level balance of mitochondrial activity. Mitochondrial 
dynamics are governed through controlling its population by mitochondrial 
biogenesis, organelle degradation, and fission/fusion processes (4). Moreover, the 
maintenance of mitochondrial proteostasis and mtDNA needs to be addressed 
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to modulate the process to take control of disease progression. Although the full 
content of mitophagy is yet to be elucidated, developing inhibitors and activa-
tors of mitophagy is a promising strategy for pharmacological achievement. The 
knowledge we gather on mitophagy and its associated metabolism will increase 
drastically throughout the ‘omics’ technology (genomics, transcriptomics, pro-
teomics, metabolomics, etc.). Hopefully, any information assists us in exploit-
ing the central hub of mitochondrial quality for control of a broad spectrum of 
benefits, including disease-specific therapeutics, modifying pathophysiological 
conditions, and even reversing the impact of aging on cells.
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CHAPTER 9

THE ROLE OF CELL DEATH IN CANCER AND 
THERAPEUTIC TARGETS

Şükriye YEŞİLOT1

INTRODUCTION

Cancer remains one of the primary global health challenges due to its complex bi-
ological structure and its capacity to adapt to and develop resistance against con-
ventional treatments. The current understanding of cancer biology has moved 
beyond characterising the disease solely as uncontrolled cell proliferation; it has 
begun to emphasise the central role of disrupted programmed cell death mech-
anisms in tumour development, progression, and resistance to treatment (1,2). 
Cellular homeostasis requires maintaining a delicate balance between cell prolif-
eration and cell death, but in malignant tumours, this balance is disrupted, and 
the suppression of cell death leads to a proliferative advantage.

Apoptosis, long considered the sole programmed cell death mechanism, is one 
of the fundamental processes that prevents tumour development by eliminating 
cells carrying DNA damage or oncogenic mutations. However, cancer cells 
can evade apoptosis through mechanisms such as the overexpression of anti-
apoptotic proteins, the inactivation of tumour suppressor genes (e.g., TP53), 
and the suppression of caspase activity, thereby supporting the survival and 
progression of malignant cells (3,4). This situation has led to the acceptance of 
resistance to cell death as one of the fundamental distinguishing characteristics 
of cancer.

In recent years, the identification of alternative forms of programmed cell 
death, such as necroptosis, ferroptosis, pyroptosis, and autophagy-related cell 
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CHAPTER 10

INBORN ERRORS OF IMMUNITY IN  
APOPTOSIS AND AUTOPHAGY

 Senem KOÇAK 1 

Avniye Kübra BASKIN 2

INTRODUCTION AND DEFINITION OF INBORN ERRORS OF 
IMMUNITY

Primary immunodeficiencies are monogenic disorders that are seen due to gene 
defects that disrupt immune system function with variable clinical phenotypes. 
Although the term “inborn errors of immunity” (IEI) has become more widely 
used in recent literature (1), the term PIDs will be utilised throughout this sec-
tion. PIDs represent a heterogeneous group of disorders, often presenting in ear-
ly childhood, and may be accompanied by autoimmune, autoinflammatory, al-
lergic diseases, and malignancies. They can be inherited in autosomal dominant, 
autosomal recessive, or X-linked patterns, and are characterized by quantitative 
or functional deficiencies of immune system components, leading to significant 
morbidity and mortality. According to the 2024 update from the Internation-
al Union of Immunological Societies (IUIS), 508 different gene mutations have 
been linked to PIDs, which are categorized into 10 groups based on clinical and 
laboratory features (2) (Table 1), each containing several subgroups. The prev-
alence of PIDs varies globally, ranging from 1/10,000 to 1/100,000 in general 
populations (4), whereas in countries with a high rate of consanguinity, such as 
Türkiye, the prevalence is approximately 30.5/100,000 (3). In the Middle East, 
similar prevalence rates ranging from 0.8 to 30.5/100,000 have been reported. 

1	 Dr, Ankara University Faculty of Medicine, Medical Microbiology Laboratory 1, skocak@ankara.edu.tr, 
ORCID iD: 0000-0002-6513-4742

2	 Ass. Prof., Gazi University Faculty of Medicine, Department of Pediatric Allergy and Immunology,  
akbaskin@hotmail.com, ORCID iD: 0000-0002-4294-7492
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