## **CHAPTER 3**

## IMPLEMENTING TOTAL PRODUCTIVE MAINTENANCE: A CASE STUDY IN KONYA INDUSTRY

Erdem EKİCİOĞLU <sup>1</sup> Mehmet Emin BAYSAL<sup>2</sup>

## INTRODUCTION

In today's competitive manufacturing environment, companies focus on optimizing production by improving cost efficiency, quality, delivery, and flexibility (Enaghani et al., 2009). Rapid technological and market changes require reducing costs and enhancing resource utilization. Many production systems suffer from underutilization, low productivity, and high costs (Lazim and Ramayah, 2009). To stay competitive, organizations must be adaptable, cost-effective, and capable of delivering world-class products (Chan et al., 2005). Total Productive Maintenance (TPM) is a company-wide methodology aimed at improving production efficiency and productivity by addressing maintenance and production issues. It reduces costs and enhances efficiency to adapt to changing market conditions. Park and Han (2001) examined key factors for successful TPM implementation and its impact on company competitiveness. They outlined four stages: preparation, pre-implementation, implementation, and stabilization, providing a checklist for readiness. Cultural change, awareness, coordination, communication, and collaboration were discussed with five model companies, and the results were summarized. Sun et al. (2003) piloted TPM in a Hong Kong manufacturing company, addressing employee reluctance by applying it to an advanced model machine. The success demonstrated TPM's suitability, boosting staff confidence. A 6-point statement highlighted key success factors. Thun (2006) analyzed TPM's dynamic requirements, evaluating reactive and preventive maintenance impacts on OEE.

DOI: 10.37609/akya.3842.c1162

Msc. Industrial Engineer, Ekicioğlu Consulting, erdem@ekicioglu.net, ORCID iD: 0009-0007-0648-8261

Assoc. Prof. Dr., Konya Technical University, Faculty of Engineering and Natural Sciences-Department of Industrial Engineering, mebaysal@ktun.edu.tr, ORCID iD: 0000-0002-1023-4009

## REFERENCES

- Ahuja, I. P. S., & Kumar, P. (2009). A case study of total productive maintenance implementation at precision tube mills, *Journal of Quality in Maintenance Engineering*, 15 (3), 241-258.
- Brah, S. A., & Chong, W. K. (2004). Relationship between total productive maintenance and performance, *International Journal of Production Research*, 42 (12), 2383-2401.
- Chan, F. T. S., Lau, H. C. W., Ip, R. W. L., Chan, H. K., & Kong, S. (2005). Implementation of total productive maintenance: A case study, *International Journal of Production Economics*, 95 (1), 71-94.
- Enaghani, M. R., Arashpour, M. R., & Karimi, M. (2009). The Relationship between Lean and TPM, Master Thesis, *University of Bords School of Engineering*, Bor-s.
- Eswaramurthi, K. G., & Mohanram, P. V. (2013). Improvement of Manufacturing Performance Measurement System and Evaluation of Overall Resource Effectiveness, *American Journal of Applied Sciences*, 10 (2), 131-138.
- Eti, M. C., Ogaji, S. O. T., & Probert, S. D. (2004). Implementing total productive maintenance in Nigerian manufacturing industries, *Applied Energy*, 79 (4), 385-401.
- Heizer, J., & Render, B. (2009). Operations Management Flexible Edition, *Upper Saddle River, NJ*, Prentice Hall, p.
- Jeon, J., Kim, C., & Lee, H. (2011). Measuring efficiency of total productive maintenance (TPM): a three-stage data envelopment analysis (DEA) approach, *Total Quality Management & Business Excellence*, 22 (8), 911-924.
- Krawjeski, L. J., & Ritzman, L. P. (2002). Operations Management: Strategy and Analysis, *Upper Saddle River, NJ*, Prentice Hall, p.
- Lazim, H. M.,& Ramayah, T. (2010). Maintenance strategy in Malaysian manufacturing companies: a total productive maintenance (TPM) approach, *Business Strategy Series*, 11 (6), 387-396.
- Maggard, B. N., &Rhyne, D. M. (1992). Total productive maintenance: A timely integration of production and maintenance, *Production and Inventory Management Journal* (33(4)), 6–10.
- McKone, K. E., & Weiss, E. N. (1998). Tpm Planned and autonomous maintenance: Bridging the gap between practice and research, *Production and Operations Management*, Vol. 7 (No. 4, Winter 1998), 335-351.
- Mobley, R. K. (1990). An Introduction to Predictive Maintenance, *New York*, Butterworth Heinemann, p. 1-3.
- Nakajima, S. (1986). Tpm Challenge to the Improvement of Productivity by Small-Group Activities, *Maintenance Management International*, 6 (2), 73-83.
- Ollila, A. a. M., M., 1999, Maintenance has a role in quality, *The TQM Magazine*, Vol. 11 (No. 1), 17-21.
- Park, K. S., & Han, S. W. (2001). Tpm Total Productive Maintenance: Impact on Competitiveness and a Framework for Successful Implementation, *Human Factors and Ergonomics in Manufacturing*, Vol. 11 (4), 321–338
- Russell, R. S., & Taylor, B. W. (2009). Operations Management: Creating Value along the Supply Chain, *New York*, *NY*, Wiley, p.
- Sun, H., Yam, R., & Wai-Keung, N. (2003). The implementation and evaluation of Total Productive Maintenance (TPM)?an action case study in a Hong Kong manufacturing company, *The International Journal of Advanced Manufacturing Technology*, 22 (3-4), 224-228.
- Swanson, L. (2001). Linking maintenance strategies to performance, *International Journal of Production Economics*, 70(3), 237–244.
- Thun, J.-H. (2006). Maintaining preventive maintenance and maintenance prevention: analysing the dynamic implications of Total Productive Maintenance, *System Dynamics Review*, 22 (2), 163-179.
- Tsuchiya, S. (1992). Quality Maintenance: Zero Defects Through Equipment Management, *Cambridge*, Productivity Press, p.
- Wang, F. K. (2006). Evaluating the efficiency of implementing total productive maintenance, *Total Quality Management & Business Excellence*, 17 (5), 655-667.