CHAPTER 6

THE NEXUS BETWEEN SELECTED MACROECONOMIC INDICATORS, ENVIRONMENTAL DEGRADATION, AND RENEWABLE ENERGY SHARE IN TOTAL ENERGY USE: EVIDENCE FROM G8 COUNTRIES

Hüseyin ÇETİN¹ Nihal ALTUN²

INTRODUCTION

Due to their limited supply, conventional fuels were depleted because of the excessive usage during the industrial era. Global climate change has numerous harmful impacts on human health (Farhad et al., 2008). Recently, clean energy3 is vital for economic expansion and the reduction of environmental damage. Therefore, industrialized countries are interested in developing and using clean energy sources such as solar, biomass, geothermal, wind, and hydroelectric energy (Saidi & Omri, 2020:1).

The energy consumption of a country is a core part of its economic sustainability. Since energy consumption is a crucial issue, many countries have taken steps to use clean energy sources. In addition, the energy consumption rate is a good indicator of whether life is well-developed in a country (Khan et al. 2021:479). Primary and inexhaustible clean energy resources meet 14% of the world's energy demand (UNDP, 2000:14). Renewable energy resources are directly related to sustainable development (Khan et al. 2021:479).

The idea of sustainable development was initially brought up during the UN Human Environment Conference in Stockholm in 1972. The Brundtland Report

DOI: 10.37609/akya.3842.c1165

Assoc.Prof. Dr., Bursa Technical University, Faculty of Humanities and Social Science, Department of International Trade and Logistic, huseyin.cetin@btu.edu.tr, ORCID iD: 0000-0001-7296-0447

Res.Asst. Dr., Bursa Technical University, Faculty of Humanities and Social Science, Department of International Trade and Logistic, nihal.altun@btu.edu.tr, ORCID iD: 0000-0003-1040-4431

In this chapter, the terms "renewable energy" and "clean energy" are used interchangeably, referring primarily to renewable sources such as solar, wind, hydro, geothermal, and biomass.

REFERENCES

- Abid, A., Mehmood, U., Tariq, S., & Haq, Z. U. (2022). The effect of technological innovation, FDI, and financial development on CO₂ emission: evidence from the G8 countries. *Environmental Science and Pollution Research*, 29(8), 11654–11662. Doi: 10.1007/s11356-021-15993-x
- Alper, A., & Oguz, O. (2016). The role of renewable energy consumption in economic growth: evidence from asymmetric causality. *Renewable and Sustainable Energy Reviews*, 60, 953–959. Doi: 10.1016/j.rser.2016.01.123
- Amri, F. (2017). The relationship amongst energy consumption (renewable and non-renewable) and GDP in Algeria. *Renewable and Sustainable Energy Reviews*, 76, 62–71. Doi: 10.1016/j. rser.2017.03.029
- Apergis, N., & Payne, J. E. (2010). Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. *Energy Policy*, 38(1), 656–660. Doi: 10.1016/j. enpol.2009.09.002
- Apergis, N., & Payne, J. E. (2011). The renewable energy consumption–growth nexus in Central America. *Applied Energy*, 88(1), 343–347. Doi: 10.1016/j.apenergy.2010.07.013
- Ben Mbarek, M., Saidi, K., & Amamri, M. (2018). The relationship between pollutant emissions, renewable energy, nuclear energy and GDP: Empirical evidence from 18 developed and developing countries. *International Journal of Sustainable Energy*, 37(6), 597–615. Doi: 10.1080/14786451.2017.1332060
- Deka, A., & Dube, S. (2021). Analyzing the causal relationship between exchange rate, renewable energy and inflation of Mexico (1990–2019) with ardl bounds test approach. *Renewable Energy Focus*, *37*, 78–83. Doi: 10.1016/j.ref.2021.04.001
- Deka, A., Cavusoglu, B., & Dube, S. (2022). Does renewable energy use enhance exchange rate appreciation and stable rate of inflation? *Environmental Science and Pollution Research*, 29, 14185–14194. Doi: 10.1007/s11356-021-16758-2
- Farhad, S., Saffar Avval, M., & Younessi Sinaki, M. (2008). Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. *International Journal of Energy Research*, 32(1), 1–11. Doi: 10.1002/er.1327
- Fuso Nerini, F., Tomei, J., To, L. et al. (2018). Mapping synergies and trade-offs between energy and the sustainable development goals. *Nature Energy, 3*(1), 10–15. Doi: 10.1038/s41560-017-0036-
- Hsiao, C. (2007). Panel data analysis—advantages and challenges. *TEST*, *16*(1), 1–22. Doi: 10.1007/s11749-007-0046-x
- Inglesi-Lotz, R. (2016). The impact of renewable energy consumption on economic growth: A panel data application. *Energy Economics*, *53*, 58–63. Doi: 10.1016/j.eneco.2015.01.003
- Khan, A., Chenggang, Y., Hussain, J., et al. (2021). Impact of technological innovation, financial development and foreign direct investment on renewable energy, non-renewable energy and the environment in Belt & Road Initiative countries. *Renewable Energy*, 171, 479–491. Doi: 10.1016/j.renene.2021.02.023
- López-Menéndez, A. J., Pérez, R., & Moreno, B. (2014). Environmental costs and renewable energy: re-visiting the environmental Kuznets curve. *Journal of Environmental Management*, 145, 368–373. Doi: 10.1016/j.jenvman.2014.07.017
- Menegaki, A. N., & Ozturk, I. (2016). Renewable energy, rents and GDP growth in MENA countries. *Energy Sources, Part B: Economics, Planning, and Policy, 11*(9), 824–829. Doi: 10.1080/15567249.2014.949392
- Naqvi, S. A. A., Shah, S. A. R., Anwar, S., et al. (2021). Renewable energy, economic development, and ecological footprint nexus: fresh evidence of renewable energy environment Kuznets curve (RKC) from income groups. *Environmental Science and Pollution Research*, 28, 2031–2051. Doi: 10.1007/s11356-020-10619-3
- Ntanos, S., Skordoulis, M., Kyriakopoulos, G., et al. (2018). Renewable energy and economic growth: Evidence from European countries. *Sustainability*, *10*(8), 2626. Doi: 10.3390/su10082626

Current Studies in Social Sciences X

- Patterson, A., & Theobald, K. S. (1995). Sustainable development, agenda 21 and the new local governance in Britain. *Regional Studies*, 29(8), 773–778. Doi: 10.1080/00343409512331349383
- Saidi, K., & Omri, A. (2020). The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. *Environmental Research*, 186, 109567. Doi: 10.1016/j.envres.2020.109567
- Schmidt, T. S., Steffen, B., Egli, F., et al. (2019). Adverse effects of rising interest rates on sustainable energy transitions. *Nature Sustainability*, *2*(9), 879–885. Doi: 10.1038/s41893-019-0338-3
- Sharif, A., Baris-Tuzemen, O., Uzuner, G., et al. (2020). Revisiting the role of renewable and non-renewable energy consumption on Turkey's ecological footprint: Evidence from quantile ardl approach. *Sustainable Cities and Society*, *57*, 102138. Doi: 10.1016/j.scs.2020.102138
- Sugiawan, Y., & Managi, S. (2016). The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. *Energy Policy*, 98, 187–198. Doi: 10.1016/j.enpol.2016.08.029
- Tugcu, C. T., Ozturk, I., & Aslan, A. (2012). Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. *Energy Economics*, 34(6), 1942–1950. Doi: 10.1016/j.eneco.2012.08.021
- Uchiyama, K. (2016). Environmental Kuznets curve hypothesis. In *Environmental Kuznets curve hypothesis and carbon dioxide emissions* (pp. 11–29). Springer, Tokyo. Doi: 10.1007/978-4-431-54910-9 2
- Wang, Q., & Wang, L. (2020). Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis. *Energy*, 207, 118200. Doi: 10.1016/j.energy.2020.118200
- Climate Council. (2022). 11 countries leading the charge on renewable energy. Retrieved July 31, 2024, from https://www.climatecouncil.org.au/11-countries-leading-the-charge-on-renewable-energy/
- Ember. (2025). France—Country profile. Ember. Retrieved August 27, 2025, from https://ember-e-nergy.org/countries-and-regions/france/
- Four Corners Clean Energy Alliance. (2023). *Evolving energy technologies in the renewable energy industry*. Four Corners Clean Energy Alliance. Retrieved July 31, 2024, from https://fourcornerscleanenergyalliance.org/evolving-energy-technologies-in-the-renewable-energy-industry-2/
- Government of Canada. (2023). *Montreal Protocol and ozone layer protection*. Retrieved July 31, 2024, from https://www.canada.ca/en/environment-climate-change/corporate/international-affairs/partnerships-organizations/ozone-layer-depletion-montreal-convention.html
- Government of Canada. (2024). *About renewable energy in Canada*. Retrieved July 31, 2024, from https://natural-resources.canada.ca/energy-sources/renewable-energy/about-renewable-energy-canada
- Rodriguez, A. (2021). *Evolution of renewable energy.* Rated Power. Retrieved July 31, 2024, from https://ratedpower.com/blog/evolution-renewable-energy/
- Stallard, E. (2024). *Climate change: renewable energy race*. BBC News. Retrieved November 17, 2024, from https://www.bbc.com/news/science-environment-35073297
- Tardi, C. (2024). *Kyoto Protocol*. Investopedia. Retrieved July 31, 2024, from https://www.investopedia.com/terms/k/kyoto.asp
- United Nations Development Programme. (2000). *World energy assessment: Energy and the challenge of sustainability*. New York: United Nations Development Programme. Retrieved August 28, 2025, from https://www.undp.org/sites/g/files/zskgke326/files/publications/World%20Energy%20Assessment-2000.pdf
- United Nations Development Programme (UNDP). (2021). Affordable and clean energy Goal 7. Retrieved August 27, 2025, from https://www.undp.org/arab-states/sustainable-development-goals/affordable-and-clean-energy
- U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. (n.d.). *Renewable energy pillar.* U.S. Department of Energy. Retrieved July 31, 2024, from https://www.energy.gov/eere/renewable-energy-pillar
- World Bank's Database (2021). World Development Indicators. World Bank. Retrieved June 1, 2021 from https://data.worldbank.org/