CHAPTER 3

STIMULI-RESPONSIVE NANOCARRIERS FOR TARGETED CANCER THERAPY

Tilbe ÇEVİKELLİ¹ Mohamed Hanfy Mahmoud AHMED² Umay Merve GÜVEN BÖLGEN³

INTRODUCTION

Cancer, a complex disease characterized by uncontrolled cell proliferation and a tendency to metastasize, is a public health problem that remains of global importance, causing approximately 10 million deaths in 2022 (1, 2). While a small ratio of cancers have an inherited genetic basis, most result from acquired risk factors such as carcinogen exposure, lifestyle, and environmental pollutants (2, 3). Conventional therapies such as surgery, chemotherapy, and radiotherapy have been the main approaches of cancer treatment for decades. While surgery is appropriate for early-stage solid tumors, chemotherapy and radiotherapy are more commonly applied due to their ability to target rapidly proliferating cells (2, 4). However, these conventional methods have significant drawbacks. For example, because chemotherapeutics are nonspecific, they target all rapidly proliferating cells, which can lead to collateral damage in healthy tissues such as bone marrow, hair follicles, and intestinal epithelium, leading to serious side effects such as myelosuppression, alopecia, and mucositis (5).

These dose-limiting toxicities, which include neutropenia, cardiomyopathy, and nephrotoxicity, often determine the maximum tolerated dose and may negatively impact treatment success (6).

DOI: 10.37609/akya.3840.c1154

Asst. Prof., Bahcesehir University, Faculty of Pharmacy, Department of Pharmaceutical Technology tilbecevikelli@hotmail.com, ORCID iD: 0000-0002-0881-0644

² Cukurova University Faculty of Pharmacy, mohammed.hanfy1999@gmail.com, ORCID iD: 0009-0003-7661-7824

³ Assoc. Prof., Cukurova University Faculty of Pharmacy, Department of Pharmaceutical Technology, umaymerveguven@gmail.com, ORCID iD: 0000-0003-1547-0817

in cancer treatment, offering advantages such as controlled/targeted release, extended therapeutic window, and reduced systemic toxicity.

CONCLUSION

In conclusion, this review highlights the critical role of targeted nanocarriers in cancer therapy, emphasizing their ability to exploit tumor-specific internal stimuli such as pH, redox imbalance, enzymatic activity, and hypoxia for precise and selective drug release. In addition, external stimuli including light, ultrasound, magnetic fields, temperature, and electric fields provide spatiotemporal control, enabling on-demand and non-invasive modulation of drug delivery. These smart delivery systems not only enhance drug solubility, stability, and tumor accumulation but also minimize systemic toxicity by concentrating therapeutic action within the tumor microenvironment. By integrating the principles of nanotechnology with stimuli-responsive strategies, targeted nanocarriers present a promising solution to the limitations of conventional chemotherapy. While significant progress has been made in preclinical studies, further research is needed to ensure clinical translation, large-scale reproducibility, and regulatory approval, paving the way for their incorporation into personalized cancer treatment.

REFERENCES

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, & Bray F. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians; 2024.
- 2. Teli MK, Chauhan D, Singh L, Rani A, Yadav S, Rawat P, & Yadav A. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine; 2021; 9:20503121211034366.
- 3. Gavas S, Quazi S, & Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. *Nanoscale Research Letters*; **2021**; 16: 173.
- 4. Zhou J, Deng M, Ma W, Li B, Wang X, Wang L, Song M, Zhong L, Zhang Y, Zhu S, Cao Y, Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao Y-B, & Cai L. Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy; 2023; 8: 18.
- Galluzzi L, Senovilla P, Zitvogel L, & Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nature Reviews Clinical Oncology; 2020; 17: 725– 741.
- 6. Baranwal A, Singh SK, & Pandey B. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. Tumori Journal; 2023.
- Kumari S, Mandal A, Panda JJ, & Khan F. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment. Nature Materials Advances; 2024; 5: 100128.
- 8. Ettari R, Bova M, Schermi C, Falsone L, Maiuolo L, Vecchio M, Palella C, & Zappalà G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience; 2019; 13: 961.
- Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, & Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters; 2017; 190: 64–83.

- 10. Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, & Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers; 2021; 13(4): 670.
- 11. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, & Shao A. Nanopartic-le-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in Molecular Biosciences; 2020; 7:193.
- 12. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, & Wang H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomedicine and Nanobiotechnology; 2019; 11(1): 1527.
- 13. Hu S, Zhao R, Shen Y, & Lyu B. Revolutionizing drug delivery: The power of stimulus-responsive nanoscale systems. Chemical Engineering Journal; 2024; 496:154265.
- 14. Mura S, Nicolas J, & Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials; 2013; 12(11): 991–1003.
- 15. Jing X, Hu H, Sun Y, Yu B, Cong H, & Shen Y. The intracellular and extracellular microenvironment of tumor site: The trigger of stimuli-responsive drug delivery systems. Small Methods; 2022; 6(3): 2101437.
- Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, & Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release; 2020; 322: 566– 592.
- 17. Mazidi Z, Javanmardi S, Naghib SM, & Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chemical Engineering Journal, 2022; 433: 134569.
- 18. Pham SH, Choi Y, & Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics; 2020; 12(7): 630.
- 19. Ding C, Tong L, Feng J, & Fu J. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment. Molecules; 2016; 21(12): 1715.
- 20. Gu M, Wang X, Toh TB, & Chow EK-H. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discovery Today; 2018; 23(5): 1043–1052.
- 21. Cheng R, Meng F, Deng C, Klok H-A, & Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials; 2013; 34(14): 3647–3657.
- 22. Jia R, Teng L, Gao L, Su T, Fu L, Qiu Z, & Bi Y. Advances in Multiple Stimuli-Responsive Drug-Delivery Systems for Cancer Therapy. International Journal of Nanomedicine; 2021; 16: 1525–1551.
- 23. Li L, Yang W-W, & Xu D-G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. Journal of Drug Targeting; 2019; 27(4): 423–433.
- 24. Sun Y, & Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials; 2021; 11(3): 746.
- 25. Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, & Kyzas GZ. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers; 2020; 12(6): 1397.
- 26. Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics; 2020; 10(10): 4557–4588.
- 27. Wells CM, Harris M, Choi L, Murali VP, Delbuque Guerra F, & Jennings JA. Stimuli-responsive drug release from smart polymers. Journal of Functional Biomaterials; 2019; 10(3): 34.
- 28. Bejarano L, Jordão MJC, & Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discovery; 2021; 11(4): 933–959.
- 29. Naser R, Fakhoury I, El-Fouani A, Abi-Habib R, & El-Sibai M. Role of the tumor microenvironment in cancer hallmarks and targeted therapy. International Journal of Oncology; 2023; 62(1): 23.
- 30. Wang Y, Ao X, & Yang W. Cancer-associated fibroblasts in tumor-draining lymph nodes: shed-

Current Research in Pharmacy and Pharmaceutical Sciences III

- ding light on the black box. Cell Communication and Signaling; 2022; 20(1): 134.
- 31. Singleton DC, Macann A, & Wilson WR. Therapeutic targeting of the hypoxic tumour microenvironment. Nature Reviews Clinical Oncology; 2021; 18(12): 751–772.
- 32. Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, & Dandara C. Advances in therapeutic targeting of cancer stem cells within the tumor microenvironment: An updated review. Cells; 2020; 9(8): 1896.
- 33. Lin X, Wu J, Liu Y, Lin N, Hu J, & Zhang B. Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules; 2022; 27(3): 948.
- 34. Parra-Nieto J, Aguirre de Carcer I, García del Cid MA, Jimenez-Falcao S, Gónzalez-Larre J, & Baeza A. Stimuli-responsive nanocarriers as active enhancers of antitumoral immunotherapy. Advanced Materials Interfaces; 2024; 11(21): 2400343.
- 35. Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, & De Marco R. Integrin-specific stimuli-responsive nanomaterials for cancer theranostics. Pharmaceutics; 2024; 16(11): 1441.
- 36. Wang Y, Chen J, & Zhao Y. Advances in stimuli-responsive drug delivery systems based on mesoporous silica nanoparticles. International Journal of Nanomedicine; 2022; 17: 1135–1155.
- 37. Khan, Md Ishak, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Applied Bio Materials; 2022; 5(3): 971-1012.
- 38. Abdella S, Abid F, Youssef SH, Kim S, Afinjuomo F, Malinga C, Song Y, & Garg S. pH and its applications in targeted drug delivery. Drug Discovery Today; 2023; 28(1): 103414.
- 39. Mu W, Chu Q, Liu Y, & Zhang N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Letters; 2020; 12: 142.
- 40. Chu S, Shi X, Tian Y, & Gao F. pH-responsive polymer nanomaterials for tumor therapy. Frontiers in Oncology; 2022; 12: 855019.
- 41. Singh AP, & Biswas A. Smart pH-responsive nanoparticles for drug delivery in cancer therapy. Journal of the Indian Chemical Society; 2022; 99(6): 100490.
- 42. Zhang J, Wang Y, Wang J, & Xu Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theranostics. Oncology and Nanomedicine; 2022; 1(1): 100031.
- 43. Sajadi Bami SN, Dinarvand R, & Atyabi F. pH-Responsive Nanoparticles for Cancer Therapy. In: Nanomaterials for Cancer Therapy. Springer, Singapore; 2022.
- 44. Yan Y, & Ding H. pH-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials; 2020; 10(8): 1613.
- 45. Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, & Magzoub M. pH-responsive high-stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Communications Biology; 2020; 3: 95.
- 46. Liu X, He F, & Liu M. New opportunities of stimulus-responsive smart nanocarriers in cancer therapy. Nano Materials Science; 2024.
- 47. Shahriari M, Bahmani M, Abbasi N, Khodavirdipour A, Hashemi M, & Ahmadi M. Advances in enzyme-responsive systems for controlled drug delivery in cancer treatment. Journal of Controlled Release; 2019; 308: 172–189.
- 48. de la Rica R, Aili D, & Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews; 2012; 64(11): 967–978.
- 49. Zheng DW, Li B, Chen HZ, & Wang Y. Tumor microenvironment-responsive activatable nanoparticles for cancer diagnosis and therapy. Journal of Controlled Release; 2021; 332: 269–284.
- 50. Egeblad M, & Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer; 2002; 2(3): 161–174.
- 51. Irshad S, Siddiqui B, ur Rehman A, Farooq RK, & Ahmed N. Recent trends and development in targeted delivery of therapeutics through enzyme-responsive intelligent nanoplatform. International Journal of Polymeric Materials and Polymeric Biomaterials; 2022; 71(6): 403–413.
- 52. Kapalatiya H, Madav Y, Tambe VS, & Wairkar S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug Delivery and Translational Research; 2022; 12(6): 1293–1305.
- 53. Thomas RG, Surendran SP, & Jeong YY. Tumor microenvironment-stimuli responsive nano-

Current Research in Pharmacy and Pharmaceutical Sciences III

- particles for anticancer therapy. Frontiers in Molecular Biosciences; 2020; 7: 610533.
- 54. Li Y, Jeon J, & Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Letters; 2020; 490: 31–43.
- 55. Xia Y, Duan S, Han C, Jing C, Xiao Z, & Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Frontiers in Oncology; 2022; 12: 1089446.
- 56. Shi Y, Liu Y, Wang S, Liu H, Wu Y, Chen H, & Wang C. Advances in hypoxia-responsive nanomedicines for enhanced cancer therapy. Frontiers in Oncology; 2022; 12: 1089446.
- 57. Chen M, Liu D, Liu F, Wu Y, Peng X, & Song F. Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release; 2021; 332: 269–284.
- 58. Mirhadi E, Mashreghi M, Maleki MF, Alavizadeh SH, Arabi L, Badiee A, & Jaafari MR. Redox-sensitive nanoscale drug delivery systems for cancer treatment. International Journal of Pharmaceutics; 2020; 589: 119882.
- 59. Sun T, & Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Advanced Drug Delivery Reviews; 2023; 196: 114773.
- Sun Q, He F, Sun C, Li G, Zhou L, Bi H, Sun J, & Li Z. Redox dual-responsive and O2-generating nanomedicine based on NIR light triggered nitric oxide release for chemo-photodynamic synergistic therapy against hypoxic tumor. International Journal of Pharmaceutics; 2020; 590: 119882.
- 61. Yang Y, & Sun W. Recent advances in redox-responsive nanoparticles for combined cancer therapy. Nanoscale Advances; 2022; 4(14): 3504–3516.
- 62. Mollazadeh S, Mackiewicz M, & Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Materials Science & Engineering C; 2021; 118: 111536.
- 63. Xie S, Huang J, Pereira AT, Xu L, Luo D, & Li Z. Emerging trends in materials and devices-based electric stimulation therapy for tumors. BMEMat; 2023; 1(3): 12038.
- 64. Kasiński A, Zielińska-Pisklak M, Oledzka E, & Sobczak M. Smart hydrogels synthetic stimuli-responsive antitumor drug release systems. International Journal of Nanomedicine; 2020; 15: 4541–4572.
- 65. Xing Y, Zeng B, & Yang W. Light-responsive hydrogels for controlled drug delivery. Frontiers in Bioengineering and Biotechnology; 2022; 10: 1075670.
- 66. Wang Y, Ceña-Diez R, Verbeke R, Breckpot K, De Smedt SC, & Lentacker I. Light-induced liposomal drug delivery. Journal of Controlled Release; 2021; 339: 310–323.
- 67. Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, & Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. Journal of Controlled Release; 2021; 338: 446–461.
- 68. Wang S, & Hou Y. New types of magnetic nanoparticles for stimuli-responsive theranostic nanoplatforms. Advanced Science; 2023; 11(1): 2305459.
- 69. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, & Pellegrino T. Iron oxide nanoparticles for magnetically guided and magnetically responsive drug delivery. Pharmaceutics; 2020; 12(2): 147.
- 70. Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, Cordani M, & Moosavi MA. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. International Journal of Pharmaceutics; 2024; 649: 123622.
- 71. Agnihotri S, Pathak A, & Patel S. Metal-Based Nanoparticles for Cancer Therapy. In: Nanomaterials for Cancer Therapy. Springer, Singapore; 2022.
- 72. Zhu J, Wang J, & Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomedicine & Pharmacotherapy; 2023; 159: 114227.
- 73. Entzian K, & Aigner A. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics; 2021; 13(8): 1135.
- 74. Awad NS, Basri SMM, & Ahmad R. Ultrasound and its impact in drug delivery. Pharmaceutics; 2021; 13(8): 1135.

Current Research in Pharmacy and Pharmaceutical Sciences III

- 75. Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, & Yao H. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. European Journal of Pharmaceutics and Biopharmaceutics; 2024; 198: 114246.
- 76. Wei P, Cornel EJ, & Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Delivery and Translational Research; 2021; 11(4): 1323–1339.
- 77. Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, & Xu C. Ultrasound-responsive materials for drug/gene delivery. Frontiers in Pharmacology; 2020; 10: 1650.