CHAPTER 5

ENDOCRINE DISRUPTING EFFECTS OF PESTICIDES: FROM EXPOSURE TO HEALTH RISKS

Hilal AVAN ÇELEBݹ

INTRODUCTION

Pesticides have become indispensable tools in modern agriculture, contributing substantially to crop protection, improved yields, and global food security. Since the mid-20th century, with the discovery of dichlorodiphenyltrichloroethane (DDT) and the expansion of the Green Revolution, the use of pesticides has proliferated worldwide. Alongside their benefits, however, concerns have grown regarding their environmental persistence, bioaccumulation in the food chain, and potential impacts on human health. Among these concerns, the ability of pesticides to disrupt the endocrine system has emerged as one of the most critical public health challenges.

The endocrine system governs a wide range of physiological processes including growth, reproduction, metabolism, and neurodevelopment and is finely tuned to respond to minimal hormonal changes. Endocrine-disrupting chemicals (EDCs), including several classes of pesticides, can mimic or antagonize natural hormones, alter receptor signaling, and interfere with hormone biosynthesis, metabolism, and degradation. Such disruptions may have profound effects on reproduction, thyroid function, neurodevelopment, and long-term metabolic health.

In this chapter, we explore the endocrine-disrupting properties of pesticides by examining exposure routes, underlying molecular mechanisms, and associated health consequences. The discussion integrates historical perspectives, regulatory considerations, and mechanistic insights from both animal and human studies. Particular attention is given to major pesticide groups—organochlorines, organ-

DOI: 10.37609/akya.3840.c1156

Res. Asst., Cukurova University, Faculty of Pharmacy, Department of Biochemistry, havan@cu.edu.tr, ORCID iD: 0000-0003-4143-0966

REFERENCES

- 1. Altıkat, A., et al., *Türkiye'de pestisit kullanımı ve çevreye olan etkileri*. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 2009. **40**(2): p. 87-92.
- 2. Tiryaki, O., *Türkiye'de yapılan pestisit kalıntı analiz ve çalışmaları*. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2016. **32**(1): p. 72-80.
- 3. Mnif, W., et al., *Effect of endocrine disruptor pesticides: a review.* Int J Environ Res Public Health, 2011. **8**(6): p. 2265-303.
- 4. Warner, G.R., et al., *Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals.* Mol Cell Endocrinol, 2020. **502**: p. 110680.
- 5. Tudi, M., et al., Exposure Routes and Health Risks Associated with Pesticide Application. Toxics, 2022. **10**(6).
- 6. Strong, L.L., et al., Reducing the take-home pathway of pesticide exposure: behavioral outcomes from the Para Niños Saludables study. J Occup Environ Med, 2009. 51(8): p. 922-33.
- 7. Cevik, C., R. Ozdemir, and S. Ari, *How to reduce pesticide exposure in farmers: An interventional study.* WORK, 2023. **75**(3): p. 887-897.
- 8. Afshari, M., et al., Effectiveness of interventions to promote pesticide safety and reduce pesticide exposure in agricultural health studies: A systematic review. PLOS ONE, 2021. 16(1): p. e0245766.
- 9. Martyniuk, C.J., A.C. Mehinto, and N.D. Denslow, *Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish.* Mol Cell Endocrinol, 2020. **507**: p. 110764.
- 10. Mansukhani, M., et al., *Organophosphate pesticide chlorpyrifos and its metabolite 3,5,6-trichloropyridinol downregulate the expression of genes essential for spermatogenesis in caprine testes.* Pesticide Biochemistry and Physiology, 2024. **204**: p. 106065.
- 11. Cobilinschi, C., et al., *ENDOCRINE DISTURBANCES INDUCED BY LOW-DOSE ORGANOP-HOSPHATE EXPOSURE IN MALE WISTAR RATS.* Acta Endocrinol (Buchar), 2021. **17**(2): p. 177-185.
- 12. Meeker, J.D., D.B. Barr, and R. Hauser, *Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men.* Reprod Toxicol, 2009. **27**(2): p. 155-60.
- 13. Zhang, X., et al., *Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies.* Frontiers in Endocrinology, 2021.
- 14. Wei, F., S. Wu, and L. Li, Long-term exposure to environmental concentration of dinotefuran disrupts ecdysis and sex ratio by dysregulating related gene expressions in Chironomus kiinensis. Frontiers in Endocrinology, 2024.
- 15. Baines, D., et al., Neonicotinoids act like endocrine disrupting chemicals in newly-emerged bees and winter bees. Scientific Reports, 2017. 7(1): p. 10979.
- 16. Zhang, B., et al., Prenatal exposure to neonicotinoid insecticides, fetal endocrine hormones and birth size: Findings from SMBCS. Environ Int, 2024. 193: p. 109111.
- 17. Muñoz, J.P., T.C. Bleak, and G.M. Calaf, *Glyphosate and the key characteristics of an endocrine disruptor: A review.* Chemosphere, 2021. **270**: p. 128619.
- 18. de Araújo-Ramos, A.T., et al., Controversies on Endocrine and Reproductive Effects of Glyphosate and Glyphosate-Based Herbicides: A Mini-Review. Front Endocrinol (Lausanne), 2021. 12: p. 627210.