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REJENERATİF ENDODONTİK TEDAVİNİN TEMEL 
BİLEŞENLERİ: KÖK HÜCRELER, BÜYÜME 

FAKTÖRLERİ VE İSKELELER

Emine ŞİMŞEK1

GİRİŞ

Rejeneratif endodontik tedavi (RET), geleneksel kök kanal tedavilerine alternatif 
olarak geliştirilen ve dişin doğal pulpa-dentin kompleksini yeniden oluşturmayı 
hedefleyen biyolojik temelli bir yaklaşım olarak bilinmektedir (1). Diş pulpası, 
dişin canlılığını sürdürmesinde kritik rol oynayan, beslenme, duyu iletimi ve sa-
vunma gibi birçok işlevi üstlenen yumuşak bir dokudur (2,3). Pulpa dokusunun 
enfekte veya nekrotik hale gelmesi durumunda uygulanan geleneksel tedaviler 
enfeksiyonu ortadan kaldırsa da, dokunun kaybı nedeniyle dişin doğal işlevleri 
geri kazanılamamaktadır.

RET, doku mühendisliği prensiplerine dayanarak, hasarlı veya kaybolmuş pul-
pa dokusunun yerine biyolojik olarak aktif yeni bir doku oluşturmayı amaçlamak-
tadır (4,5). Bu süreç; kök hücreler, büyüme faktörleri ve biyolojik iskele sistemleri 
gibi temel unsurların bir araya getirilmesiyle gerçekleştirilir. Özellikle genç, kök 
gelişimi tamamlanmamış dişlerde uygulanan rejeneratif tedaviler, kök gelişiminin 
devam etmesini sağlayarak dişin uzun dönem prognozunu iyileştirmektedir (6,7).

Günümüzde en yaygın RET yöntemi revaskülarizasyondur ve kök kanalına 
kan pıhtısı, trombosit bakımından zengin plazma (PRP) veya trombosit açısın-
dan zengin fibrin (PRF) yerleştirilerek kök hücrelerin kanal içine çekilmesi sağ-
lanmaktadır. Ancak, revaskülarizasyonla gerçek pulpa dokusu oluşamayabileceği 
için, kök hücre nakli ve hücre çağırma gibi alternatif stratejiler geliştirilmektedir 
(5,6). Kök hücre naklinde, kök hücreler büyüme faktörleri ve iskelelerle kök ka-
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pulpa rejenerasyonunun başarı oranını artırmak için daha fazla çalışmaya ve ge-
lişmeye ihtiyaç duyulmaktadır.
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