

Chapter 4

BULK DEFORMATION PROCESSES: BASICS AND RECENT DEVELOPMENTS

Burcu ERTUĞ¹

INTRODUCTION

Plastic deformation processes are the operations for shaping the metals by the application of the forces using the dies and the tools. During the bulk deformation processes, the metal stocks are subjected to a high percentage of plastic deformation. The cross-sectional change takes place during all of the processes. Mostly, hot processing and warm processing are preferred. Some of the particular deformations are performed at ambient temperatures ⁽¹⁾.

The molten metal is shaped by the casting to produce a slab, a billet or an ingot. A semi-fabricated product is the state prior to the manufacturing. These bulk deformation processes are categorized as rolling, drawing, extruding and forging ⁽²⁾.

In this chapter, the basics and the main categories of the bulk deformation processes have been briefly explained and the recent developments in these processes have been reviewed.

ROLLING OPERATION

In this process, radial pressure is the single stress type and this stress is utilized to deform the stock through the rollers as in Fig.1. The most common method among the bulk deformation processes is the rolling. The rolling process is categorized depending on the arranging of the rolls. The two-high mills are the first rolling mills giving a low amount of the products. In addition, this type of rolling is time consuming because the raw stock must be returned to the mill front. That is why a reversing type of a two-high mill was designed to perform the rolling in either of two directions ⁽³⁾.

¹ Dr. Nişantaşı University, burcu.ertug@nisantasi.edu.tr

either for the common or for the specific industrial products and a number of them are still on the way. Consequently, it can be concluded that nowadays the metal manufacturing industry has a tendency to make a shifting towards the automation more than any other time.

REFERENCES

1. Kalpakjian S, Schmid SR, *Manufacturing, Engineering & Technology*, 5th Edition, ISBN 0-13-148965-8, Pearson Education, Inc. 2006.
2. Hot and Cold Bulk Deformation Processes, ISBN 978-3-8348-0131-9, Friedr. Vieweg & Sohn Verlag, GWV Fachverlage GmbH, Wiesbaden, 2007.
3. Keytometals (2013). (17.12.2013 from <http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=179>).
4. Menezes PL, Reeves CJ, Kailas SV et al. Tribology in Metal Forming. *Tribology for Scientists and Engineers*. Springer, New York, NY, 2013.
5. DeGarmo EP, Black JT, Kohser RA, *Materials and Processes in Manufacturing*, 9th Edition, 2003.
6. Metal-Forming-2:Rolling (2020). (2004-2020 from <http://www.doitpoms.ac.uk/tplib/metal-forming-2/rolling.php>).
7. Metal Processing:Cold Rolling (2020). (02.2020 from http://www.efunda.com/processes/metal_processing/cold_rolling.cfm).
8. Forgia Rapida, Bologna, Italy (2020). (02.2020 From <http://www.forgiarapida.com/home-manufacturing-process-ring-rolling.html>).
9. Burns Machinery Inc: Ring Mills (2020). (02.2020 from http://www.ringmills.com/ring_mills.htm).
10. T Udomphol, Suranaree University of Technology, Jan-Mar 2007
11. Metal Processing Extrusion (2020). (02.2020 from http://www.efunda.com/processes/metal_processing/extrusion.cfm).
12. Fundamental Manufacturing Processes Series Study Guide, Society of Manufacturing Engineers, pp.1-5, 2020.
13. Metal Processing: Forging (2020). (02.2020 from http://www.efunda.com/processes/metal_processing/forging.cfm).
14. Aluminum Forgings (2020). (14.02.2020 from <http://www.aluminum.org/industries/processing/forgings>).
15. Forging Book: The Ultimate Guide of Metal Forging, Gatonbrass, 1990-2016.
16. Keytometals (2013). (17.12.2013 from <http://www.keytometals.com/page.aspx?ID=CheckArticle&site=kts&NM=168>).
17. Cold Drawing (2020). (2003-2020 from <http://www.wisegeek.com/what-is-cold-drawing.htm>).
18. Nasseri S, Bulk Deformation Processes in Metal Forming, Manufacturing Processes, MET1311, Southern Polytechnic State University, 30 March 2015.
19. Precision kidd Technology (2015). (2010-2015 from <http://www.precisionkidd.com/technology.htm>).
20. Library of Manufacturing, Forming: Drawing (2020). (02.2020 from <http://thelibraryofmanufacturing.com/imagesforming/Drawing4.jpg>).
21. NWP:Wire Drawing Machine (2017). (06.2017 from http://nwp.co.in/images/wire_drawing_machine_9_blocker_B.png).

22. Mapping the Role of Metal Forming in Automotive Industry, Indian Machine Tool Manufacturers' Association, Karnataka, India, 2014.
23. Conventional Metal Forming Machine Tools Market 2019: Global Industry Demand, Recent Trends, Size and Share Estimation by 2022 with Top Players, 2019.
24. Schey JA, Progress report on recent advances in bulk metal deformation processes. International Metals Reviews, 18 Jul 2013:302-303.
25. Li Y, Fang W, Lu C, et al. Microstructure and mechanical properties of 34CrMo4 steel for gas cylinders formed by hot drawing and flow forming. Materials. 2019;12(1351):1-14.
26. Zhang DW, Liu BK, Zhao SD. Influence of processing parameters on the thread and spline synchronous rolling process: an experimental study. Materials. 2019;12(1716):1-20.
27. Xiong W, Wang Y, Li XP, et al. Study on the forming process and deformation behavior of inner ring in the wheel hub bearing based on riveting assembly. Materials. 2019;12:3785.
28. Lim C, Technology Highlight: Advanced Metal Forming, Technical Mindtribe, September 2013.
29. Behrens BA, Bouguecha A, Lüken I, et al. Near-net and net shape forging. Comprehensive Materials Processing. 2014;3:427-446.
30. Manafi B, Shatermashhadi V, Abrinia K, et al. Development of a novel bulk plastic deformation method: hydrostatic backward extrusion. International Journal of Advanced Manufacturing Technology. 2016;82(9):1823-1830.
31. Kliber J. Advanced Forming Technology. Metalurgija. 2016;55(4):835-838.
32. Ostrava MG. Advanced Forming Technologies. 2016. Subject number: 633-0807:1-70.
33. Valiev R, Aleksandrov IV. New developments in the field of fabrication of bulk nanostructured materials by severe plastic deformation. Physics of Metals and Metallography. 2002;94:4-10.
34. Metal Forming: Tech Trends, Industry Report, OEM Update Editorial 15 January 2018.